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❏ Extreme rainfall, hurricanes, and the associated flooding 
events are consistent recurring disasters

❏ $1 Trillion since 1980 and $850B since 2000
❏ For the majority of Americans, ⅔ of their wealth is tied up 

in their home. 1 flood can wipe out a lifetime of savings!
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1. Motivation: Hurricanes and Flooding

Tropical storms west of Africa and in the Atlantic Ocean in June, 2023

❏ Subtropical or tropical cyclogenesis 
in the Atlantic Ocean

❏ Saffir-Simpson Scale for hurricane 
wind speeds
❏ Major: 3-4-5; up to 160 mph

❏ Helene: Category 4; 140 mph winds; 
+30 inches of rain; ~200 fatalities

Hurricane Helene: Flood damage near 
Swannanoa River on Oct 3, 2024 [Getty Images]

❏ ~2.5 trillion gallons of rain a day
❏ Torrential rain leads to freshwater (inland) flooding
❏ Catastrophic damages to infrastructure

How well can we predict these flooding events?
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June is the new August !!



2. Hydro-DART: The Hydrologic Prediction System
Hydro-DART: A hydrologic ensemble prediction system that integrates NSF 
NCAR’s Weather Research and Forecasting Hydrological Model (WRF-Hydro) 
with NSF NCAR’s Data Assimilation Research Testbed (DART)   

❏ Hourly and sub-hourly streamflow assimilation
❏ A highly robust prediction framework 
❏ State-of-the-art data assimilation (DA) tools
❏ .. and many more including snow DA 
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ConfigurationPython Wrapper Diagnostics

Github
NCAR/DART/tree/main/
models/wrf_hydro
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2.1 The Hydrologic Model: WRF-Hydro

Streamflow in cubic feet per second (cfs) as simulated by NOAA’s 
NWM (v3.0) for the month of September, 2024

WRF-Hydro: NSF NCAR Weather 
Research and Forecasting model (WRF) 
hydrological modeling system. Research 
component of the National Water Model 
(NWM) 

Community-based system [Gochis et al., 2020]: 
❏ Major water cycle components
❏ Reliable streamflow predictions
❏ Land-atmosphere coupling

Open Source
Github: NCAR/wrf_hydro_nwm_public
Web: ral.ucar.edu/projects/wrf_hydro
Docs: wrf-hydro.readthedocs.io
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2.1 The Hydrologic Model: WRF-Hydro
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1. Atmospheric driver
2. Noah-MP LSM

a. 1 km spatial resolution
b. 1 hr temporal resolution

3. Terrain routing
a. Finer 250 m resolution
b. Resolve local topographic 

features (e.g., depressions)
4. Geospatial framework: USGS 

National Hydrography Dataset 
(NHD)
a. Medium-resolution 
b. Streams and catchments

5. Channel + subsurface routing



2.2 Hydro-DART: Streamflow Data

❏ USGS operates a network of more than 9000 
stream gauges nationwide 

❏ Hourly (+sub-hourly) assimilation of 
streamflow data

1889: Rio Grande at 
Embudo, New Mexico
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2.3 The Data Assimilation Research Testbed

DART: A community facility for 
ensemble Data Assimilation, developed 
and maintained by DAReS in CISL 

What can you do with DART: 
❏ Ensemble forecasting/reanalysis
❏ Model improvement and predictability
❏ Sensitivity analysis 
❏ OSE, OSSE + DA algorithms
❏ Observation design/evaluation

Github: NCAR/DART
Web: dart.ucar.edu
Docs: docs.dart.ucar.edu

Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Arellano, 2009: The Data 
Assimilation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc. 90, 1283-1296
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2.4 Flooding Scenarios
Hurricane Florence, NC (2018) Flash Flood, WV (2016) Hurricane Ian, FL (2022)

❏ Category 4 hurricane
❏ Landfall: Sep. 14 (Carolinas)
❏ Winds up to 150 mph
❏ Damages: $25 billion
❏ ~50 people died
❏ Flooding magnitude exceeded 

Matthew (‘16) and Floyd (‘99) 
combined

❏ Several thunderstorms
❏ Flash flooding, June 2016
❏ Damages: $1.2 billion
❏ ~23 people died
❏ 8-10” of rainfall over a 12-hr period
❏ Occurrence probability:  1/1000 

❏ Category 4 hurricane
❏ Landfall: Sep. 28 
❏ US record: 5th strongest
❏ Damages: > $112 billion
❏ ~150 people died
❏ Precipitation exceeded 20 inches
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3. Novel Data Assimilation Algorithms and Tools

Bayes Theorem:

❏ x: model state variables such as streamflow
❏ y: observations i.e., gauge flow data
❏ p(x): prior (forecast) distribution
❏ p(y|x): observation likelihood function 
❏ p(x|y): posterior (analysis) distribution 
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3. Novel Data Assimilation Algorithms and Tools

Bayes Theorem:

❏ x: model state variables such as streamflow
❏ y: observations i.e., gauge flow data
❏ p(x): prior (forecast) distribution
❏ p(y|x): observation likelihood function 
❏ p(x|y): posterior (analysis) distribution 

Solve the Bayesian problem sequentially 
using the ensemble Kalman filter!
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3.1 DA Algorithms: The Ensemble Kalman Filter (EnKF) 

Adopted from: 
Tandeo et al. (2020)

● Use an ensemble (a set of 
model state realizations) to 
estimate the pdf

● Gaussian approximation
● Recursive Algorithm
● DA cycle:

○ Propagation (or forecast) 
○ Update (or analysis) 
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3.1 DA Algorithms: The EnKF 

Prior Ensemble Mean

Prior background 
covariance 

Posterior Ensemble Mean
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3.1 DA Algorithms: The EnKF 

Prior Ensemble Mean

Prior background 
covariance 

Posterior Ensemble Mean
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Ensemble Size



3.1 DA Algorithms: EnKF Sampling
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● Draw samples from a known bi-
modal distribution 

● Do these samples provide a good 
representation of the entire pdf?
○ 40 members 
○ 80 members
○ 400 members
○ …
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3.1 DA Algorithms: EnKF Limitations

➔ Geophysical Models: Can’t afford running large ensemble sizes!
◆ Sampling errors: deteriorate 

● True variance is underestimated
● Rank deficiency; N << model size
● Noisy and spurious correlations
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3.1 DA Algorithms: EnKF Limitations

➔ Model errors
◆ Ensemble collapse 

● Uncertain parameters 
● Forcing (precipitation) errors

➔ Physical Variability
◆ Reduced ensemble spread

● Low-flow conditions
● Simplified dynamics 

➔ Can’t afford running large ensemble sizes!
◆ Sampling errors: deteriorate 

● True variance is underestimated
● Rank deficiency; N << model size
● Noisy and spurious correlations

29



3.1 DA Algorithms: EnKF Limitations

➔ Model errors
◆ Ensemble collapse 

● Uncertain parameters 
● Forcing (precipitation) errors

➔ Physical Variability
◆ Reduced ensemble spread

● Low-flow conditions
● Simplified dynamics 

➔ Can’t afford running large ensemble sizes!
◆ Sampling errors: deteriorate 

● True variance is underestimated
● Rank deficiency; N << model size
● Noisy and spurious correlations

30

❏ Issues degrade the estimate of the sample 
background covariance

❏ Noisy, inaccurate, and underestimated background 
covariance leads to suboptimal updates



3.2 Physical Uncertainty: Parameter Perturbations 
➔ Increase the physical variability of the hydrologic model, especially during low-flow periods
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3.2 Physical Uncertainty: Parameter Perturbations 
➔ Increase the physical variability of the hydrologic model, especially during low-flow periods

Multi-Configuration Ensemble: 
Perturb uncertain channel parameters to create realistic variability

● Manning’s N, n
● Width of compound channel, Tcc
● Manning’s N of compound channel, ncc

Sampling uniformly under some physical constraints

● Top width, T
● Bottom width, B
● Side slope, m
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Streamflow multi-configuration ensemble 
realizations for the Ian flooding domain

Forcing Ensemble: 
Generate ensemble perturbations to the boundary 
fluxes: surface and groundwater bucket



3.2 Physical Uncertainty: Parameter Perturbations
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Added variability 
due to forcing 

and parameters 
perturbations

Ensembles are denoted by groups of three arrows (N >> 3). The spatially distributed streamflow and bucket 
head states comprise the "state" vector passed to DART for updating by USGS streamflow observations



3.3 Along-The-Stream Localization
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❏ Localization: A way to tackle sampling errors
❏ deal with spurious, long-distance correlation
❏ improves the rank of the covariance 
❏ Euclidean distance-based
❏ widely used in NWP  

Taper: Localization 
Factor [0,1]

Sea-level pressure 
correlations. Adopted 
from Hamill (2003)

“Schur Product”
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❏ Localization: A way to tackle sampling errors
❏ deal with spurious, long-distance correlation
❏ improves the rank of the covariance 
❏ Euclidean distance-based
❏ widely used in NWP  

Taper: Localization 
Factor [0,1]

Sea-level pressure 
correlations. Adopted 
from Hamill (2003)

“Schur Product”

True Covariance Ensemble Covariance

Localized Ens. Covariance



3.3 Along-The-Stream Localization
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❏ Given a stream network (unstructured 
grid), How to localize the impact of the 
gauge to neighboring streams?
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❏ Given a stream network (unstructured 
grid), How to localize the impact of the 
gauge to neighboring streams?

❏ Along-The-Stream (ATS) Localization
❏ A topological localization strategy
❏ Adheres to the stream network
❏ Improves information propagation

X: Tree-like shapes: Downstream from a gauge, 
information flows only downstream
Y: Observations in different catchments do not have 
common close reaches

★ Functionality:
○ Two reaches could be physically close but 

unrelated if they belong to different 
catchments 

○ ATS localization mitigates not only spurious 
correlations but also physically incorrect ones 
between unconnected state variables 

X

Y

El Gharamti et al., 
(2021)



3.3.1 ATS Localization: Performance
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3.3.1 ATS Localization: Performance
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ATS enhances the prediction accuracy (up to 40%)

Free Run 
(No DA)



3.3.1 ATS Localization: Performance
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ATS enhances the prediction accuracy (up to 40%) Regular localization fails with large distances

Free Run 
(No DA)



3.4 Adaptive Covariance Inflation
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❏ Tackle underestimated variance through Inflation
❏ Inflation increases the variance of the 

ensemble (mean remains the same)
❏ It is equivalent to scaling the covariance 

❏ Counteracts underestimated variance and can be 
utilized to mitigate model biases

❏ Quite effective; can be applied to the prior and/or 
posterior ensemble

Inflation 
Factor > 1
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3.4 Adaptive Covariance Inflation
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❏ Tackle underestimated variance through Inflation
❏ Inflation increases the variance of the 

ensemble (mean remains the same)
❏ It is equivalent to scaling the covariance 

❏ Counteracts underestimated variance and can be 
utilized to mitigate model biases

❏ Quite effective; can be applied to the prior and/or 
posterior ensemble

Inflation 
Factor > 1

What is an appropriate inflation value? 
How to choose it? 



3.4 Adaptive Covariance Inflation

Spatially and Temporally Varying Adaptive Scheme
[MWR: El Gharamti, 2018]

❏ Inflation factor is assumed to be a random variable
❏ Use the available streamflow data to estimate it
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3.4.1 Adaptive Inflation: Algorithm
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Geometrical interpretation of the adaptive 
inflation scheme



3.4.2 Inflation: Accurate Streamflow Predictions
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3.4.2 Inflation: Accurate Streamflow Predictions
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~80% Accuracy



3.4.3 Inflation: Bias Correction Tool
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3.4.4 Inflation: Hydro-DART Assessment
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3.4.4 Inflation: Hydro-DART Assessment
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Hydro-DART estimates consistently outperformed the model’s 
performance for FL’s Ian flooding (>50%) and WV’s flash flood (~30%)



3.5 Hybrid Ensemble-Variational Scheme
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Hybrid Weighting 
Coefficient; [0, 1]

❏ Hybridization: A better estimate of the true covariance!
❏ Can tackle sampling errors, model biases and 

computational issues all simultaneously

❏ Adaptive scheme for the weight [MWR: El Gharamti, 2020]

Hybrid EnKF-OI Linearly combine:
❏ The flow-dependent ensemble covariance
❏ A static background covariance; often used in OI 

and 3/4D-VAR systems 
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3.5.1 Hybrid Scheme: Climatology
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❏ Here, we estimate the static background 
using the model’s climatology

❏ 42-year retrospective WRF-Hydro model 
simulation: 1979-2020

❏ B is approximated using a large 
climatological ensemble (1000)



3.5.1 Hybrid Scheme: Climatology
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Hurricane David (1979)

Hurricane Elena (1985)

Hurricane Floyd (1999)
Hurricane Gabriele 

(2001)

Hurricane Ivan+Jeanne 
(2004)

Hurricane Irma (2017)



3.5.2 Hybrid Scheme: Accuracy vs the EnKF
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3.5.3 Hybrid Scheme: Computational Efficiency
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The hybrid scheme is able to provide skillful predictions 
using only a quarter of the computational resources! 

EnKF 
N = 80

Hybrid 
N = 10

Hybrid 
N = 20

Hybrid 
N = 40

Hybrid 
N = 60

Hybrid 
N = 80

* All Gauges
+ Reference Gauges



3.5.4 Hybrid Scheme: Adaptive Form
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3.5.4 Hybrid Scheme: Adaptive Form
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Using only 20 flow-dependent ensemble members, the 
adaptive hybrid EnKF-OI scheme provides robust 

performance, high quality streamflow estimates and 
minimal use of computational resources



3.5.5 Hybrid Scheme: Forecast Assessment
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Early Warnings: Up to 18 hours 
ahead of flood peaks! 



3.5.5 Hybrid Scheme: Forecast Assessment
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❏ For more detailed information, refer to 
our recent work [El Gharamti et al., 2024]



4.1 Current Activities: Optimal Observation Design
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USGS Next Generation Water Observing System (NGWOS): 
● streamflow quantitative information 
● evapotranspiration, snowpack, soil moisture, ..
● water use, water quality constituents
● connections between surface and groundwater

Where to place the new gauges?
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USGS Next Generation Water Observing System (NGWOS): 
● streamflow quantitative information 
● evapotranspiration, snowpack, soil moisture, ..
● water use, water quality constituents
● connections between surface and groundwater

Where to place the new gauges?

1. Observing System Simulation 
Experiments (OSSEs) 

2. Assimilation Impact: Upstream vs 
Downstream gauges

3. Next Steps: Optimize for accuracy, 
uncertainty, …

[Rafieeinasab et al., 2024]



4.2 Current Activities: CONUS-wide Predictions
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❏ Hydro-DART experiments across CONUS
❏ ATS Localization sensitivity runs
❏ Hybrid: B Climatology tuning
❏ Non-Gaussian filtering
❏ A full reanalysis

Preliminary Results: Percentage of RMSE 
reduction, by River Forecast Centers 

(RFC), using Hydro-DART as compared 
to the Open Loop 



5.1 Future Plans: Coupled DA with Hydro-DART 
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Enhance prediction skill of the coupled land-hydro system:
❏ On top of streamflow, we would like to integrate the land 

surface model, Noah-MP and conduct weakly and 
strongly coupled DA

❏ Study the impact of assimilating soil moisture, snow depth, 
.. on streamflow and vice versa
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Enhance prediction skill of the coupled land-hydro system:
❏ On top of streamflow, we would like to integrate the land 

surface model, Noah-MP and conduct weakly and 
strongly coupled DA

❏ Study the impact of assimilating soil moisture, snow depth, 
.. on streamflow and vice versa

Domain area. Purple circles: Location of New York State 
Mesonet (NYSM) gauges

Initial snow DA work:
➔ Snow depth measurements from NYSM 

are assimilated every hour (Dec. 2020)
➔ Update streamflow, soil moisture content, 

accumulated melt, soil ice content, …

Time-series of snow depth (up to lead time of 120 hours) for the OL and 
the DA runs at the NYSM site ANDE [Rafieeinasab et al., 2023]  



5.2 Future Plans: pywatershed+DART 
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Pywatershed is Python package for simulating hydrologic 
processes motivated by the need to modernize important, 
legacy hydrologic models at the USGS, particularly the 
Precipitation-Runoff Modeling System (PRMS)

❏ Goal: Build an interface between USGS 
pywatershed hydrological model and DART

❏ Interface to mimic Hydro-DART tools 
❏ Kick-off in early 2025 (very soon)

Github: EC-USGS/pywatershed
Docs: pywatershed.readthedocs.io



5.3 Future Plans: ML+Hydro-DART
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❏ Ungauged Basins: A basin with insufficient 
hydrological data (quantity and quality) to 
draw meaningful predictions

❏ PUB: Prediction in Ungauged Basins was 
the decadal problem of the International 
Association of Hydrological Sciences 
(IAHS) from 2003–2012

❏ Our Idea: Train a Generative AI model
over regions where observational data is 
abundant, and then use it over regions 
where the observational data is sparse or 
does not exist and generate pseudo data

❏ Pseudo Streamflow Observations can then be 
effectively used for model calibration and 
assimilation purposes, enhancing its 
forecasting skills (flooding and drought)

Performance of different process-based and
LSTM hydrological models. Adopted from
Arsenault et al., 2023.
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E-mail: gharamti@ucar.edu
DART: dart@ucar.edu

THANK YOU
QUESTIONS?! 

Hydro-DART on Github: NCAR/DART/tree/main/models/wrf_hydro

mailto:gharamti@ucar.edu
mailto:dart@ucar.edu

