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U.S. 2022 Billion-Dollar Weather and Climate Disasters
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d Extreme rainfall, hurricanes, and the associated flooding

events are consistent recurring disasters
1 $1 Trillion since 1980 and $850B since 2000

1 For the majority of Americans, %5 of their wealth is tied up
in their home. 1 flood can wipe out a lifetime of savings!
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1. Motivation: Hurricanes and Flooding

GOES16 IR: 2023-06-22-1205 UTC
. G16 GLM Flash Count=367

Subtropical or tropical cyclogenesis
in the Atlantic Ocean

[

Saffir-Simpson Scale for hurricane
wind speeds

J Major: 3-4-5; up to 160 mph
Helene: Category 4; 140 mph winds;
+30 inches of rain; ~200 fatalities

"
e

Weathernerds.org

Tropical storms west of Africa and in the Atlantic Ocean in June, 2023

1 ~2.5 trillion gallons of rain a day
(1 Torrential rain leads to freshwater (inland) flooding
d Catastrophic damages to infrastructure

Hurricane Helene: Flood damage near How well can we predict these flooding events?
Swannanoa River on Oct 3, 2024 [Getty Images]




2. Hydro-DART: The Hydrologic Prediction System

Hydro-DART: A hydrologic ensemble prediction system that integrates NSF
NCAR’s Weather Research and Forecasting Hydrological Model (WRF-Hydro)
with NSF NCAR’s Data Assimilation Research Testbed (DART)

1 Hourly and sub-hourly streamflow assimilation
1 A highly robust prediction framework

1 State-of-the-art data assimilation (DA) tools

1 .. and many more including snow DA

WREHydro

Data
Assimilation
Kescarch
Tcstbed
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2. Hydro-DART: The Hydrologic Prediction System

Hydro-DART: A hydrologic ensemble prediction system that integrates NSF
NCAR’s Weather Research and Forecasting Hydrological Model (WRF-Hydro)
with NSF NCAR’s Data Assimilation Research Testbed (DART)

1 Hourly and sub-hourly streamflow assimilation
1 A highly robust prediction framework

1 State-of-the-art data assimilation (DA) tools

1 .. and many more including snow DA

Github
NCAR/DART/tree/main/
models/wrf hydro

Python Wrapper  Configuration Diagnostics
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WREHydro
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Assimilation
Research
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2.1 The Hydrologic Model: WRF-Hydro

WREF-Hydro: NSF NCAR Weather
Research and Forecasting model (WRF)
hydrological modeling system. Research

component of the National Water Model
(NWM)

Community-based system [Gochis et al., 2020]:
1 Major water cycle components
1 Reliable streamflow predictions
1 Land-atmosphere coupling

Open Source
Github: NCAR/wrf hydro nwm public
Web: ral.ucar.edu/projects/wrf hydro
Docs: wrf-hydro.readthedocs. io

National Water Model - Streamflow Analysis (Prototype)

Valid Time: 2024-09-01 00:00 UTC

NWCEE

0 250 $00 1.000
Miles

Prototype visualization, for guidance use only.
Visit water. weather.gov for the officlal forecast.

Streamflow in cubic feet per second (cfs) as simulated by NOAA’s
NWM (v3.0) for the month of September, 2024




=

2.1 The Hydrologic Model: WRF-Hydro

Atmospheric driver

2. Noah-MP LSM

a. 1km spatial resolution
b. 1 hr temporal resolution

3. Terrain routing

a. Finer 250 m resolution
b. Resolve local topographic
features (e.g., depressions)
4. Geospatial framework: USGS
National Hydrography Dataset
(NHD)
a. Medium-resolution
b. Streams and catchments
5. Channel + subsurface routing

/ 1 NWM Forcing Engme
(1km gnd) (‘; -

© 2.NoahMP _
LSM
(1 km grid)

e :‘J
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Catchment
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3. Terrain Routing Module .
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5. Channel & Reservoir
Routing Modules
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2.2 Hydro-DART: Streamflow Data
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1 USGS operates a network of more than 9000

stream gauges nationwide

d Hourly (+sub-hourly) assimilation of

streamflow data

1889: Rio Grande at
Embudo, New Mexico

-

———
Active gages collect water data
and transmit it in real time.
water level ] 21t
flowrate =  10cfs
Some even collect omperse § § 72°
water quality data too. conductvity % 150 pSjem
dissotved oxygen @ 8.7 mg/L
fiood forecasting /2 W
water availabilit -R the.
These data are critical wer generation Yl

for water decisions.




2.3 The Data Assimilation Research Testbed

DART: A community facility for Github: NCAR/DART
ensemble Data Assimilation, developed Web: dart.ucar.edu
and maintained by DAReS in CISL Docs: docs.dart.ucar.edu
What can you do with DART: WALCHES G HECEH ROSE SQG
1 Ensemble forecasting/reanalysis O o WACCM LMDZ ngfg
1 Model improvement and predictability Q s
1 Sensitivity analysis WRE
1 OSE, OSSE + DA algorithms CAM-Chem v
1 Observation design/evaluation WRE-Chem | ‘
MPAS_ATM - NCO%;

Anderson, |., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Arellano, 2009: The Data
Assimilation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc. 90, 1283-1296

AIMING FOR BETTER PREDICTION

The Data Assimilation Research Testbed




2.4 Flooding Scenarios

Hurricane Florence, NC (2018) Flash Flood, WV (2016) Hurricane Ian, FL (2022)

1 Category 4 hurricane 1 Several thunderstorms 1 Category 4 hurricane

1 Landfall: Sep. 14 (Carolinas) 1 Flash flooding, June 2016 1 Landfall: Sep. 28

1 Winds up to 150 mph 1 Damages: $1.2 billion 1 USrecord: 5th strongest
1 Damages: $25 billion 1 ~23 people died 1 Damages: > $112 billion
1 ~50 people died 1 8-10” of rainfall over a 12-hr period 1 ~150 people died

4 4 4

Flooding magnitude exceeded Occurrence probability: 1/1000 Precipitation exceeded 20 inches

Matthew (“16) and Floyd ("99)
combined




3. Novel Data Assimilation Algorithms and Tools

Bayes Theorem:

p(zly) o< p(z) - p(y|)

x: model state variables such as streamflow
y: observations i.e., gauge flow data

p(x): prior (forecast) distribution

p(y | x): observation likelihood function
p(x|y): posterior (analysis) distribution

Y
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1 p(y|x): observation likelihood function

d p(x|y): posterior (analysis) distribution

= 0(X): Prior pdf
= n(y|x): Obs Likelihood
=== p(xly): Post pdf

(00

(o))
T

Solve the Bayesian problem sequentially
using the ensemble Kalman filter!

N

Probability Density Function (pdf)
5

o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Streamflow (cms)

s nm

INSFE | “\NCAR



3.1 DA Algorithms: The Ensemble Kalman Filter (EnKF)

A
environmental - ~
stem P observations
. forecast
B canalysis e Use an ensemble (a set of
\ w model state realizations) to
estimate the pdf
e Gaussian approximation
e Recursive Algorithm
e DA cycle:
o Propagation (or forecast)
o Update (or analysis)
model
/ truth
- time
| | >
Adopted from: l I
Tandeo et al. (2020) (2 et Crio

s nm

INSFE | “\NCAR




3.1 DA Algorithms: The EnKF

p(fv) ~N x7,P7]

Prior Ensemble Mean

fo -

s Prior background
covariance
N / T
N 1 z
1=1

p(zly) ~ N [x*, P?] 1
x*=x/+P/H" (HP/H" +R) (y° - Hx/)

\

Posterior Ensemble Mean




3.1 DA Algorithms: The EnKF
#e) ~ N [
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3.1 DA Algorithms: The EnKF
#e) ~ N [

1 N Pr1or Ensemble Mean
== Z X;

1 Prior background

/' covariance

& S ) ()

Ensemble Size

p(zly) ~ N [X*, P?]
i“\—f x/ +T (P@{T +R)  (y° - Hx/)

Posterior Ensemble Mean




3.1 DA Algorithms: EnKF Sampling

e Draw samples from a known bi-
modal distribution
e Do these samples provide a good
representation of the entire pdf?
o 40 members
o 80 members
o 400 members
©)
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3.1 DA Algorithms: EnKF Sampling

e Draw samples from a known bi-
modal distribution
e Do these samples provide a good
representation of the entire pdf?
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3.1 DA Algorithms: EnKF Limitations

- Geophysical Models: Can’t afford running large ensemble sizes!
& Sampling errors: deteriorate P/

=
o

e Rank deficiency; N << model size -1/VN
. . . =O-Error in Sample Correlation
e Noisy and spurious correlations

0.3

Sample Covariance True Covariance

|Error|
0.2

N-1
0.1

Rank
Full Rank

® 0 2 9> R P SV DA
LI U P SAN A SRS

Ensemble Size




3.1 DA Algorithms: EnKF Limitations

= Can’t afford running large ensemble sizes!
& Sampling errors: deteriorate P/
e True variance is underestimated
e Rank deficiency; N << model size
e Noisy and spurious correlations

- Model errors
& LEnsemble collapse
e Uncertain parameters
e Forcing (precipitation) errors

=> Physical Variability
¢ Reduced ensemble spread
e Low-flow conditions
e Simplified dynamics




3.1 DA Algorithms: EnKF Limitations

= Can’t afford running large ensemble sizes!
& Sampling errors: deteriorate P/
e True variance is underestimated
e Rank deficiency; N << model size
e Noisy and spurious correlations

- Model errors
& LEnsemble collapse
e Uncertain parameters

e Forcing (precipitation) errors

=> Physical Variability
& Reduced ensemble spread
e Low-flow conditions
e Simplified dynamics

pfo L S (o ) (of —2f\T
= vo12 (%) (< =)

=1

1 Issues degrade the estimate of the sample
background covariance

1 Noisy, inaccurate, and underestimated background
covariance leads to suboptimal updates

Pf 'l Ptrue




3.2 Physical Uncertainty: Parameter Perturbations

=> Increase the physical variability of the hydrologic model, especially during low-flow periods

31



3.2 Physical Uncertainty: Parameter Perturbations

=> Increase the physical variability of the hydrologic model, especially during low-flow periods

Multi-Configuration Ensemble:
Perturb uncertain channel parameters to create realistic variability

e Top width, T e Manning’s N, n
e Bottom width, B e Width of compound channel, Tcc
e Side slope, m e Manning’s N of compound channel, ncc

Sampling uniformly under some physical constraints

le o
1€ -
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3.2 Physical Uncertainty: Parameter Perturbations

=> Increase the physical variability of the hydrologic model, especially during low-flow periods

Multi-Configuration Ensemble:
Perturb uncertain channel parameters to create realistic variability

e Top width, T e Manning’s N, n
e Bottom width, B e Width of compound channel, Tcc
e Side slope, m e Manning’s N of compound channel, ncc

Sampling uniformly under some physical constraints

le
"

A 4
—

Forcing Ensemble:
Generate ensemble perturbations to the boundary
fluxes: surface and groundwater bucket

Streamflow multi-configuration ensemble
realizations for the lan flooding domain

33



3.2 Physical Uncertainty: Parameter Perturbations

Atmospheric
forcing

Added variability

due to forcing

and parameters {L and surface

perturbations model
(Noah-MP)

/ ‘

Y

routing
y

Spatial
aggregation

D f
P Overland &
subsurface

Streamflow Data Assimilation System

Parametric L—»| Channel &
noise model { reservorr
models Streamflow (cms)
Flux from overland + subsurface YY)
routing (cms)
USGS
Channel parameters DART streamﬂ.ow
observations
) Groundwater Bucket head (m)
Pgrametnc > bucket
noise model model

Flux from bottom of
soil columns (cms)

Ensembles are denoted by groups of three arrows (N >> 3). The spatially distributed streamflow and bucket
head states comprise the "state" vector passed to DART for updating by USGS streamflow observations




3.3 Along-The-Stream Localization

_(a) Correlations in P, 25-member ensemble

d Localization: A way to tackle sampling errors
d deal with spurious, long-distance correlation
d improves the rank of the covariance
d Euclidean distance-based
J widely used in NWP

Y/ (T~ obs
location

Taper: Localization
Factor [0,1]

N

poP
“Schur Product”

B (g) Gaspari & Cohn correlation function

Sea-level pressure

:| correlations. Adopted
from Hamill (2003)

W 4
e [ ] [
-8~6-4-2 .2 4
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A w1
]
6 8
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_(a) Correlations in P, 25-member ensemble

d Localization: A way to tackle sampling errors
d deal with spurious, long-distance correlation
d improves the rank of the covariance
d Euclidean distance-based
J widely used in NWP

R (e~ obs
location

True Covariance Ensemble Covariance
Taper: Localization
Factor [0,1]

N

poP
X “Schur Product”

B (g) Gaspari & Cohn correlation function

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Sea-level pressure
:| correlations. Adopted
from Hamill (2003)

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Localized Ens. Covariance




3.3 Along-The-Stream Localization

1 Given a stream network (unstructured
grid), How to localize the impact of the

gauge to neighboring streams?

Latitude

N A Y Neuse River |
) TN, <‘ \} ){ e 2
g ) o = y ~~Cape Fear River
6 74
\ Lty e
% I
i SR T L K=  OF
-79 -78.5 -78 775 77

Longitude



3.3 Along-The-Stream Localization

1 Given a stream network (unstructured
grid), How to localize the impact of the
gauge to neighboring streams?

d Along-The-Stream (ATS) Localization
d A topological localization strategy
d Adheres to the stream network
1 Improves information propagation

* Functionality:

o Two reaches could be physically close but
unrelated if they belong to different
catchments

o ATS localization mitigates not only spurious
correlations but also physically incorrect ones
between unconnected state variables

X: Tree-like shapes: Downstream from a gauge,
information flows only downstream

Y: Observations in different catchments do not have
common close reaches

Ln AN Localization
CE N4 Factor1

DK N i 0.9

n / 0.8

U 0.7

Ly . 0.6

AN 0.4

ARRL A 0.3

0.2

0.1
0

G AV o .
4 ;N,/( .. El Gharamti et al.,
T (2021)

38



3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)
ATS Localization (100 km) Regular Localization (1km)

() o
o T T T o T T
1 . UsedObs Open Loop, RMSE: 68.3 1 . UsedObs Open Loop, RMSE: 68.3
5 * Rejected Obs: 0.54% Prior Mean, RMSE: 5.6 = * Rejected Obs: 51.31% Prior Mean, RMSE: 34.3
o F Prior Ens -~ = Post Mean, RMSE: 4.9 . 0 - Prior Ens -~ = Post Mean, RMSE: 26.4 .
Y 1Y
Post Ens Post Ens

200
200

Streamflow (cms)
150
Streamflow (cms)
150

100
100

Free Run
(No DA)

50

Sep 14 Sep 22 Sep 30
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3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)

ATS Localization (100 k"l)-

+ Used Obs

Open Loop,(RMSE: 68.3
* Rejected Obs: 0.54% Prior Meari, RMSE: 5.6
- Prior Ens - -~ Post Mea
Post Ens

Free Run
(No DA)
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Streamflow (cms)

250 300
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« Used Obs
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3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)

ATS Localization (100 k"l)-
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3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)

ATS Localuzatlon (100 km)
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* Rejected Obs: 0.54%
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100
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3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)

ATS Localization (100 k“l)-

o

o : .
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% * Rejected Obs: 0.54% Prior Meari, RMSE: 5.6
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3.3.1 ATS Localization: Performance

Tar River at Tarboro, NC (NWIS 02083500)
ATS Locallzatuon (100 km) Regular Locahzatuon (20km)

o o
o T o : —~— :

@1 . Used Obs Open Loop, [AMSE: 68.3 @1 . Used Obs Open Loop, AMSE: 68.3

% * Rejected Obs: 0.54% Prior Meari, RMSE: 5.6 5 * Rejected Obs: 10.58% Prior Me

or Prior Ens - -~ Post Mea . or Prior Ens - = Post Mean .

Post Ens Post Ens

200
200

Streamflow (cms)
150
Streamflow (cms)
150

100
100

Free Run
(No DA)

o ‘ L 1 l o ‘ | ' |
Sep 14 Sep 22 Sep 30 Sep 14 Sep 22 Sep 30

ATS enhances the prediction accuracy (up to 40%) Regular localization fails with large distances




3.4 Adaptive Covariance Inflation

1 Tackle underestimated variance through Inflation
1 Inflation increases the variance of the
ensemble (mean remains the same)
1 Itis equivalent to scaling the covariance

1 Counteracts underestimated variance and can be
utilized to mitigate model biases

1 Quite effective; can be applied to the prior and/or
posterior ensemble
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3.4 Adaptive Covariance Inflation

Spatially and Temporally Varying Adaptive Scheme
[MWR: El Gharamti, 2018]

1 Inflation factor is assumed to be a random variable
1 Use the available streamflow data to estimate it

P(Aly) o< p(A) - p(y[A)
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3.4 Adaptive Covariance Inflation

Spatially and Temporally Varying Adaptive Scheme
[MWR: El Gharamti, 2018]

1 Inflation factor is assumed to be a random variable
1 Use the available streamflow data to estimate it

P(Aly) o< p(A) - p(y[A)
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3.4 Adaptive Covariance Inflation

Spatially and Temporally Varying Adaptive Scheme
[MWR: El Gharamti, 2018]

1 Inflation factor is assumed to be a random variable
1 Use the available streamflow data to estimate it

P(Aly) o< p(A) - p(y[A)
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3.4.1 Adaptive Inflation: Algorithm
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3.4.3 Inflation: Bias Correction Tool
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Abstract. Prrdxcung major noods during exlmne rainfall

shuu that ATS localization is a crucial ingredient of our hy-

events remains an in

logic DA system, providing at least 40 % more accurate
(root mean square error) streamflow estimates than regular,

Euclidean di -based localization. An of hy-

flows over short ti s bined with multiple sources
of model error, makes it d\fﬁcull 10 ac ly si in-
tense floods. This study presents a general data assimil

framework that aims to improve flood predictions in chan-
nel routing models. Hurricane Florence, which caused catas-
trophic flooding and damages in the Carolinas in Septem-
ber 2018, is used as a case study. The National Water Model

| h | that adaptive inflation is extremely use-
ful und perhaps indispensable for improving the forecast skill
during flooding cvents with significant model crrors. We ar-
gue that adaptive prior inflation is able to serve as a vigor-
ous bias correction scheme which varies both spatially and

(NWM) configuration of the WRF-Hydro modeling framc-

porally. Major imp over the model’s severely

"

work is interfaced with the Data Assimil R
Testbed (DART) to produce ensemble streamflow forecasts
and lys flow observations from

107 United States Geological Survey (USGS) gauges are as-
similated for a period of 1 month.
The data assimilation (DA) system developed in this pa-

are suggested along the
Pee Dec River in South Carolina, and many other locations in
the domain, where inflation is able to avoid filter divergence
and, thereby, assimilate significantly more observations.

1 Introduction

Aﬂe«mg nearly a 100 million people worldwide per year,

per exp two novel namely (1) along-the-
stream (ATS) i localization and (2) spatially and
temporally varying adaptive covariance inflation. ATb local-
ization aims to mitigate not only spurious correl due
to limited ensemble size, but also ph)ncally corre-
lations between d and i d state

ling is the most natural disaster (Guha-Sapir

etal, 2013) Flooding impacts human life, livelihood, and
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3.5 Hybrid Ensemble-Variational Scheme

Q [)\ (pof’f)] + (1 - a)B ~ Ptrue

Hybrid Weighting
Coefficient; [0, 1]
Hybrid EnKF-OI — Linearly combine:
d The flow-dependent ensemble covariance

d A static background covariance; often used in OI
and 3/4D-VAR systems

EnKF:)\(pof’f> a=1
= 4 EnOI: B a=0
Hybrid Form O0<ax<l

J Hybridization: A better estimate of the true covariance!
1 Can tackle sampling errors, model biases and
computational issues all simultaneously

1 Adaptive scheme for the weight [MWR: El Gharamti, 2020]
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3.5 Hybrid Ensemble-Variational Scheme

a | A ,oof”c + (1 —a)B ~ P

JANUARY 2021 EL GHARAMTI 65
Hybrid Weighting “Hybrid Ensemble-Variational Filter: A Spatially and Temporally Varying A daptive Algorithm
o o to Estimate Relative Weighting
Coefficient; [0, 1]

MOHAMAD EL GHARAMTT"

HYbrid EnKF-OI — Linearly Combine: * National Center for Atmospheric Research, Boulder, Colorado
I:I The flow_dependent ensemble Covariance (Manuscript received 30 March 2020, in final form 8 September 2020)

3 M . 1 ABSTRACT: Model errors and sampling errors produce inaccurate sample covariances that limit the performance of

D A Statlc baCkground Covarlancel Often used m OI ensemble Kalman filters. Linearly hybridizing the flow-dependent ensemble-based covariance with a time-invariant
background covariance matrix givesa better estimate of the true error covariance. Previous studies have shown this, both in

and 3/ 4D—VAR Systems theory and in practice. How to choose the weight for each covariance remains an open question especially in the presence of

model biases. This study assumes the weighting coefficient to be a random variable and then introduces a Bayesian scheme

to estimate it using the available data. The scheme takes into account the discrepancy between the ensemble mean and the

observations, the ensemble variance, the static background variance, and the uncertainties in the observations. The pro-

—~ posed algorithm is first derived for a spatially constant weight and then this assumption is relaxed by estimating a unique

EnKF . A o P f o= 1 scalar weight for each state variable. Using twin experiments with the 40-variable Lorenz 96 system, it is shown that the

¢ p = proposed scheme is able to produce quality forecasts even in the presence of severe sampling errors. The adaptive algorithm

allows the hybrid filter to switch between an EnKF and a simple EnOl depending on the statistics of the ensemble. In the

# EnOI. B o= 0 presence of model errors, the adaptive scheme demonstrates additional improvements compared with standard enhance-
® - ments alone, such as inflation and localization. Finally, the potential of the spatially varying variant to accommodate

challenging sparse observation networks is demonstrated. The computational efficiency and storage of the proposed

Hybrid FOI'm O < a < 1 scheme, which remain an obstacle, are discussed.

KEYWORDS: Bayesian methods; Filtering techniques; Inverse methods; Kalman filters; Ensembles; Numerical weather
prediction/forecasting

Hybridization: A better estimate of the true covariance!
. . L. Introduction (e.g., Houtekamer and Mitchell 1998; Bishop and Hodyss
Can tackle Sampllng errors, model biases and For the past ~2 decades, the pursui of improving the per.  200%2:b: Anderson 2012; Lei et al. 2016) and the use of muk-
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G TR 2 Localization, on the other hand, tackles sampling error by re-
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resulting in a full-rank matrix. The multiphysics, often referred
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3.5.1 Hybrid Scheme: Climatology

1 Here, we estimate the static background
using the model’s climatology

d 42-year retrospective WRF-Hydro model
simulation: 1979-2020

d B is approximated using a large
climatological ensemble (1000)




3.5.1 Hybrid Scheme: Climatology
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.1 Hybrid Scheme: Climatology

Hillsborough River near Tampa, FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

North Prong Alafia River at Keysville FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

North Prong Alafia River at Keysville FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

North Prong Alafia River at Keysville FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

North Prong Alafia River at Keysville FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

North Prong Alafia River at Keysville FL
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

Kanawha River at Charleston, WV
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

Kanawha River at Charleston, WV
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

Kanawha River at Charleston, WV
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3.5.2 Hybrid Scheme: Accuracy vs the EnKF

Kanawha River at Charleston, WV
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3.5.3 Hybrid Scheme: Computational Efficiency
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The hybrid scheme is able to provide skillful predictions
using only a quarter of the computational resources! 87
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3.5.4 Hybrid Scheme: Adaptive Form

Big Slough Near North Port, FL
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3.5.4 Hybrid Scheme: Adaptive Form

Big Slough Near North Port, FL
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3.5.4 Hybrid Scheme: Adaptive Form

Big Slough Near North Port, FL
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Using only 20 flow-dependent ensemble members, the
adaptive hybrid EnKF-OI scheme provides robust
performance, high quality streamflow estimates and
minimal use of computational resources



3.5.5 Hybrid Scheme: Forecast Assessment
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3.5.5 Hybrid Scheme: Forecast Assessment

d For more detailed information, refer to
our recent work [El Gharamti et al., 2024]

Hydrol. Earth Syst. Sci., 28, 3133-3159, 2024
https://doi.org/10.5194/hess-28-3133-2024
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Abstract. In the face of escalating instances of inland and
flash flooding spurred by intense rainfall and hurricanes, the
accurate prediction of rapid streamflow variations has be-
come imperative. Traditional data assimilation methods face
challenges during extreme rainfall events due to numerous
sources of error, including structural and parametric model
uncertainties, forcing biases, and noisy observations. This
study introduces a cutting-edge hybrid ensemble and opti-
mal interpolation data assimilation scheme tailored to pre-
cisely and efficiently estimate streamflow during such critical
events. Our hybrid scheme uses an ensemble-based frame-
work, integrating the flow-dependent background stream-
flow covariance with a climatological error covariance de-
rived from historical model simulations. The dynamic in-
terplay (weight) between the static background covariance
and the evolving ensemble is adaptively computed both spa-
tially and temporally. By coupling the National Water Model
(NWM) configuration of the WRF-Hydro modeling system

brid data assimilation system propels streamflow forecasts
up to 18h in advance of flood peaks, marking a substantial
advancement in flood prediction capabilities.

1 Introduction

Flooding can stem from various causes, including prolonged
rainfall events like tropical storms or hurricanes, as well as
intense rainfall over short periods or complications such as
debris and ice jams. When examining events causing at least
abillion dollars in damage, river and urban flooding alone ac-
counts for 7.4 % of US natural disasters from 1980 to 2023.
Tropical cyclones top the list, contributing to 52 % of the
damage (Smith, 2020).

Tropical storms and hurricanes are characterized by de-
structive winds, storm surgc:‘nnd catastrophic flooding. Hur-




4.1 Current Activities: Optimal Observation Design

USGS Next Generation Water Observing System (NGWOS):
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4.1 Current Activities: Optimal Observation Design

USGS Next Generation Water Observing System (NGWOS):

e streamflow quantitative information T

e evapotranspiration, snowpack, soil moisture, .. | [Rafieeinasab et al., 2024]
e water use, water quality constituents e Sub-basin 5

e connections between surface and groundwater C 1 '

— Delaware River Basin

Delaware River Basin
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4.2 Current Activities: CONUS-wide Predictions

Preliminary Results: Percentage of RMSE
reduction, by River Forecast Centers
(RFC), using Hydro-DART as compared
to the Open Loop

d Hydro-DART experiments across CONUS
(1 ATS Localization sensitivity runs
1 Hybrid: B— Climatology tuning
d Non-Gaussian filtering
1 A full reanalysis




5.1 Future Plans: Coupled DA with Hydro-DART

Enhance prediction skill of the coupled land-hydro system:

1 On top of streamflow, we would like to integrate the land
surface model, Noah-MP and conduct weakly and
strongly coupled DA

1 Study the impact of assimilating soil moisture, snow depth,
.. on streamflow and vice versa

s nm

INSFE | “\NCAR



5.1 Future Plans: Coupled DA with Hydro-DART

Enhance prediction skill of the coupled land-hydro system: Initial snow DA work:

1 On top of streamflow, we would like to integrate the land - Snow depth measurements from NYSM

surface model, Noah-MP and conduct weakly and are assimilated every hour (Dec. 2020)
> Update streamflow, soil moisture content,
strongly coupled DA

accumulated melt, soil ice content, ...
1 Study the impact of assimilating soil moisture, snow depth,

.. on streamflow and vice versa

@® NYSM selected sites 2
e NYSM "
A USGS selected sites

A GAGES-Il Reference Gauges

* USGS Streamflow Gages

Rivers

Forecasted Snow Depth at NYSM site : ANDE

0.1 lead_time
£ :
= 0.0 e r s, e s e g
L ot v 90
o
[S] 60
3
204 30
(5}
0.3~

0.2~

0.1~

|

0.0+ b\ v gty

Dec 01 Dec 15 Jan 01 \ L)
Time-series of snow depth (up to lead time of 120 hours) for the OL and [— i A VR Ve
the DA runs at the NYSM site ANDE [Rafieeinasab et al., 2023] Domain area. Purple circles: Location of New York State

Mesonet (NYSM) gauges




5.2 Future Plans: pywatershed+DART

Pywatershed is Python package for simulating hydrologic

processes motivated by the need to modernize important,
legacy hydrologic models at the USGS, particularly the
Precipitation-Runoff Modeling System (PRMS)

Github: EC-USGS/pywatershed
Docs: pywatershed. readthedocs.io

1 Goal: Build an interface between USGS
pywatershed hydrological model and DART

1 Interface to mimic Hydro-DART tools
1 Kick-off in early 2025 (very soon)
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5.3 Future Plans: ML+Hydro-DART

1 Ungauged Basins: A basin with insufficient 1 Ouwur Idea: Train a Generative AI model
hydrological data (quantity and quality) to over regions where observational data is
draw meaningful predictions abundant, and then use it over regions

where the observational data is sparse or

1 PUB: Prediction in Ungauged Basins was does not exist and generate pseudo data
the decadal problem of the International
Association of Hydrological Sciences 1 Pseudo Streamflow Observations can then be
(IAHS) from 2003-2012 effectively used for model calibration and

assimilation purposes, enhancing its
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Hydro-DART on Github: NCAR/DART/tree/main/models/wrf hydro

E-mail: gharamti@ucar.edu
DART: dart@ucar.edu
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