

NSF NCAR's advanced computing, data services, software and educational resources for earth system science

Thomas Hauser

Director NSF NCAR Computational Information Systems Laboratory (CISL)

January 14, 2025

Goals

- 1. To build awareness of the many NCAR computing services, products, and resources available to help advance *your* science
- 2. To build connections between NCAR staff and the scientific communities that we support

Format and agenda

Format

- 5-minute lightning talks with 1-minute for questions
- ~15 minutes for questions for all at the end

Agenda

- High Performance Computing (HPC): Resources, Access, and Support (Daniel Howard)
- Data services (Doug Schuster)
- Community analysis tools and visualization services (Orhan Eroglu)
- Data Assimilation (Jeff Anderson)
- Machine Learning (Charlie Becker)
- Training and Communities (Katelyn FitzGerald)
- SIParCS (Katelyn FitzGerald)
- Q&A (all)

NSF NCAR Town Hall event website

- Slides
- Recordings
- Speaker bios
- More!

High Performance Computing (HPC): Resources, Access, and Support

Daniel HowardConsulting Services Group

NCAR's High-Performance Computing, Data, & Analysis Resources: 2024

+64 soon

Data Analysis & Visualization

Casper: heterogeneous system for data analysis & viz.

- 75 High-Throughput Computing nodes
- 15 visualization nodes with accelerated graphics
- 20 dense GPU nodes for Al/ML, Code Development
- 4 nodes for Research Data processing
- 6 1.5TB large memory nodes

PROJECT PYTHIA

http://projectpythia.org

CISL develops specialized visualization software & services for Earth Science applications

https://geocat.ucar.edu

reating Center

High Performance **Storage**

Campaign Storage

- 125PB long-term, online storage
- ±17,464 hard drives
- 56 servers

Hierarchical Storage
(HSM) Data Migration

Quasar Tape Library

- 35PB long term archival storage

Jupyterhub

- 22 IBM TS1160 tape drives
- 1774 20TB tape cartridges
- 216 hard drives
- 2PB disk cache
- 5 data mover servers

Derecho 'scratch' Storage

- **55PB** short-term storage
- Principally supports HPC jobs
- 5,088 hard drives
- 28 servers

Stratus Object Storage

- 5PB object storage
- 588 hard drives
- 6 servers

NSF NCAR HPC Access & Support Services

Compute and Storage Resource Allocations - https://ncar.pub/allocations

- NSF NCAR compute and storage resources are available to US-based university researchers in Earth System Science domains. The process depends on the scope of resource requirements:
 - Exploratory Allocation: Graduate students, post-doctoral researchers, or new faculty member at a U.S. university can request a one-time allocation at each career stage.
 - Small Allocation: Useful to complete small projects or to conduct initial runs in preparation for submitting a request for a large allocation.
 - Data Analysis & Classroom Allocations: are available to provide access to our extensive data holdings with minimal compute requirements.
 - Large Allocation: Proposals accepted every six months in March and September. Our HPC Allocations Panel
 reviews requests in April and October, and projects begin in May and November. No upper limit, within predefined
 resource capacity constraints.

Support Forums

- NSF NCAR's Consulting Services Group maintains HPC user documentation, fields support tickets, provides virtual
 consulting services, and maintains a consultant on duty during business hours to monitor and triage issues with the
 HPC systems.
- Users should join NCAR HPC Users Group (NHUG) & Slack space where the community collaborates on timely issues, seeks peer feedback, & networks with dedicated channels for #derecho-users, #casper-users, #jupyterhub-users, etc.
- User Trainings, Software Hackathons, & Support for Educational/Workshop Uses of HPC Resources

Allocation Types & Application Process

Award Type	Resource HPC limit	Frequency	Funding eligibility	
Large	No upper limit (subject to availability)	Twice Annually (March & September)	NSF award required	
Small	1M CPU / 2.5K GPU hours (Derecho)			
Exploratory & Classroom	0.5M CPU / 1.5K GPU hours (Derecho)	Continuous	N/A	
Data Analysis	(Casper Only)		Any funding source	

https://ncar.pub/allocations

Data Services

Doug Schuster

Search NSF NCAR Data Catalog (DASH Search)

https://data.ucar.edu

DASH Search

Home

Resources

Collections

About

DASH Search allows users to find, browse, and access digital assets created and published by NSF NCAR and UCAR Community Programs.

Search Data, Software, Models and Publications

Search...

Browse by Resource Type

dataset

image

model

publication

software

MAUNA LOA SOLAR OBSERVATORY

NSF NCAR Research Data Archive - Remote Access and Data Proximate Compute

History

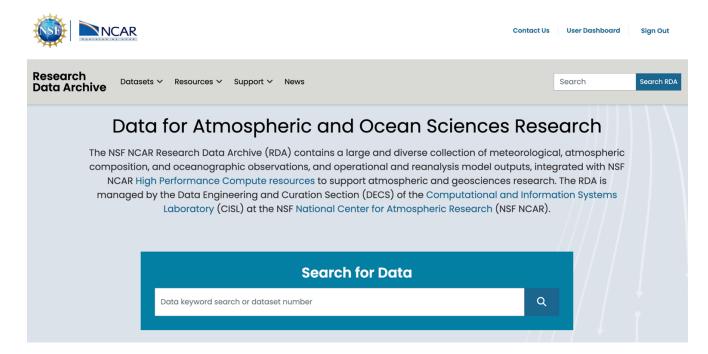
Established in the 1960s

Purpose

 Support atmospheric and ocean sciences research at NSF NCAR and US universities with community reference datasets

Collections

- Ocean & atmospheric observations, analyses, reanalyses, climate simulation outputs
- 700+ datasets, 29M files, 9 PB
- 70+ datasets growing daily-monthly


Free and open access

- 28,000+ Unique Web users in FY 2024
- 22 PB Data Delivered in FY 2024

Science educated staff

https://rda.ucar.edu

NSF NCAR Research Data Archive - Remote Access and Data Proximate Compute

https://rda.ucar.edu

Home / Datasets / D633006

ERA5 Reanalysis Model Level Data

d633006 [☑] | DOI: 10.5065/XV5R-5344 ☆

- 1. Click on Data Access tab
- 2. Select files for traditional download or request a subset
- 3. View file locations on HPC-connected storage

DESCRIPTION

DATA ACCESS

CITATION

DOCUMENTATION

SOFTWARE

METRICS

ASK A QUESTION >

Mouse over the underlined table headings for detailed descriptions

DATA DESCRIPTION

UNION OF AVAILABLE PRODUCTS

	DATA FILE D	OWNLOADS	CUSTOMIZABLE DATA REQUESTS
	Web Server Holdings	Globus Transfer Service (GridFTP)	Subsetting
2	Web File Listing	Globus Transfer	Get a Subset

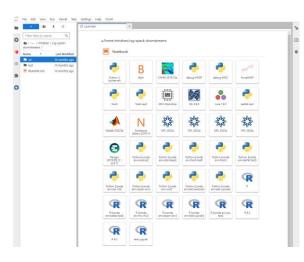
NCAR-ONLY ACCESS

(GLADE) Holdings

GLADE File Listing

NSF NCAR Research Data Archive - Data Proximate Compute

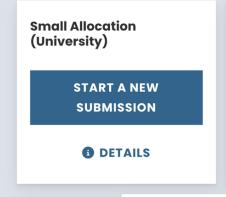
rda.ucar.edu


- Popular Datasets
 - NCEP Products
 - Final Analysis, GFS, CFSR, CFS, In Situ Obs
 - ECMWF products
 - ERA-5 0.25 degree and model resolution
 - JMA products
 - JRA-55, JRA-3Q
- PI/NCAR produced datasets
 - USGS CONUS 404, CESM2 Large Ensemble

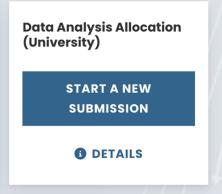
Data Proximate Compute at NSF NCAR

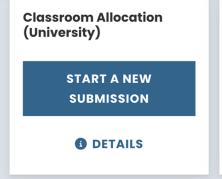
Data Analysis Allocation

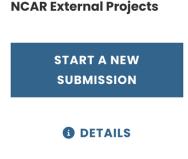
Available to researchers from any eligible institution regardless of the source of funding for the planned analysis. Researchers are only required to identify the specific NCAR-hosted data sets that are essential to completing their science objectives.



https://arc.ucar.edu/xras_submit/opportunities


Allocation Opportunities


Submit new requests for projects here.

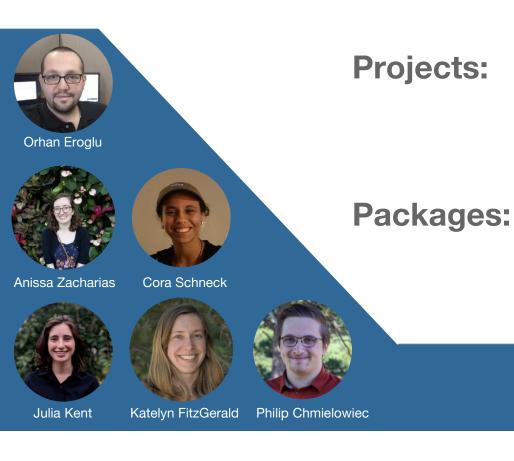

To manage one of your existing projects, select My Allocations above.

Questions and support

Questions?

rdahelp@ucar.edu

schuster@ucar.edu



Community Analysis Tools and Visualization Services

Orhan Eroglu, Nihanth Cherukuru Visualization and Analysis Software Team

The GeoCAT (Geoscience Community Analysis Toolkit) Team and Projects

"Creating scalable data analysis and visualization tools for Earth System Science data to serve the geosciences community"

Contact GeoCAT

GeoCAT Software Products

GeoCAT-comp: Analysis operators

GeoCAT-applications: Further support for Pivot-to-Python

Applications
Plot Types

Data Analysis

Date and Time

GeoCAT Applications

GeoCAT Applications is a community resource managed by the GeoCAT team. Inspired by the NCL Applications page, this is designed to be a quick reference demonstrating capabilities within the Scientific Python Ecosystem that may be relevant to your geoscience workflows.

New to Python or GeoCAT Applications? Check out the Getting Started guide!

Python Examples

Dates and Times

 Working with Date and Time

Plot Types

Data Analysis

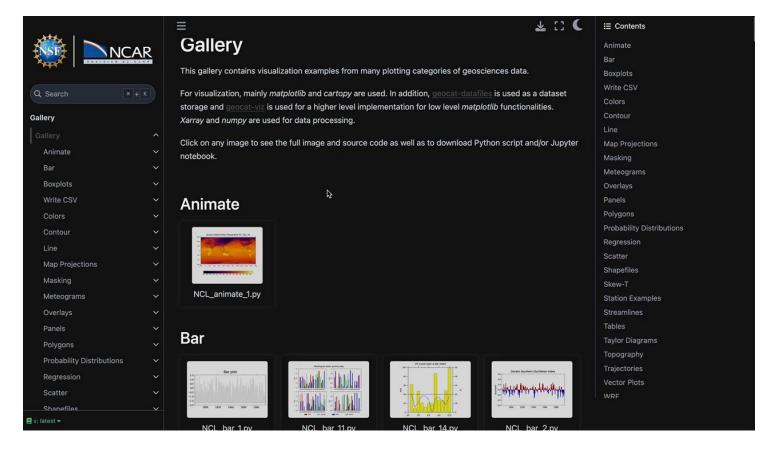
- General Applied Math
- <u>Calculating</u>
 Climatologies
- Humid Heat Metrics

Regridding

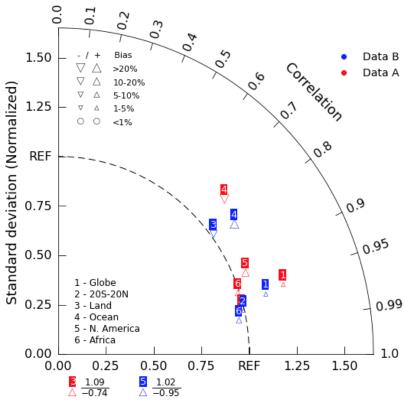
GeoCAT Software Products

GeoCAT-comp: Analysis operators

Usage Examples Here's some examples of how to use geocat-comp. Vertically Integrated Moisture Calendar Averaging Climatology Average Flux Convergence Fourier Filter


GeoCAT-applications: Further support for Pivot-to-Python NCL to Python

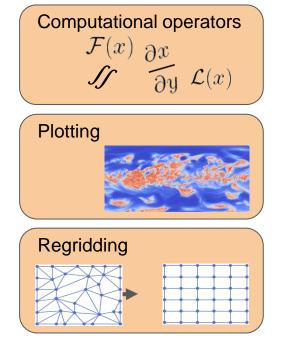
NCL Index
NCL Applications


NCL Index				
NCL Function	Description	Python Equivalent	Notes	
<u>abs</u>	Returns the absolute value of numeric data	abs() or numpy.abs()	example notebook	
<u>asin</u>	Computes the inverse sine of numeric types	<pre>math.asin() or numpy.arcsin()</pre>	example notebook	
acos	Computes the inverse cosine of numeric types	<pre>math.acos() or numpy.arccos()</pre>	example notebook	
atan	Computes the inverse cosine of numeric types	<pre>math.atan() or numpy.arctan()</pre>	example notebook	
atan2	Computes the inverse tangent of (y/x) for numeric types	<pre>math.atan2() or numpy.arctan2()</pre>	example notebook	
avg	Computes the average of a variable regardless of dimensionality	<pre>numpy.average() or numpy.mean()</pre>	example notebook	
<u>008</u>	Computes the cosine of numeric types	<pre>math.cos() or numpy.cos()</pre>	example notebook	
cosh	Computes the hyperbolic cosine of	<pre>math.cosh() or numpy.cosh()</pre>	example	

GeoCAT Software Products

GeoCAT-examples: Visualization Gallery

Special plots, e.g.


Taylor diagrams

UXArray: Community Geoscience Analysis Tools for Unstructured Mesh Data

Next generation, kilometer-scale climate and global weather models

After nearly two decades of development and evaluation, the climate and global weather modeling communities are transitioning from simple structured grids to more complex, but more scalable **unstructured grids** upon which governing equations of state are solved.

- 1. <u>Develop extensible</u>, <u>scalable</u>, <u>open source</u> software for data analysis and visualization on unstructured grids
- 2. Sustainable and community owned

Visualization Services and Research (ViSR)

"Advanced Visualizations for Data Analysis and Communication"

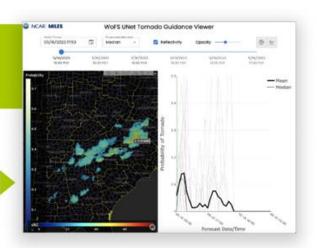
Nihanth Cherukuru

Stas Jaroszynski

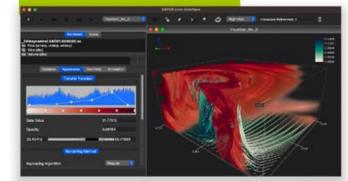
Matt Rehme

Scott Pearse

Tammy Zhang


lan Franda

Visualizations for **Communication**

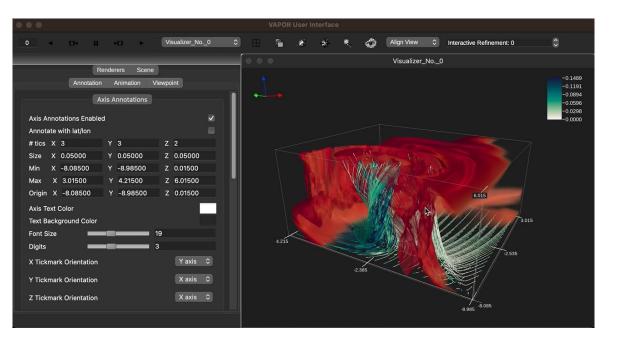

MPAS "Aqua-Planet"
Visualization: Matt Rehme
Science: Rosimar Rios-Berrios

Visualizations for **Decision Making**

Tornado guidance dashboard Visualization: Tammy Zhang Science: David John Gagne

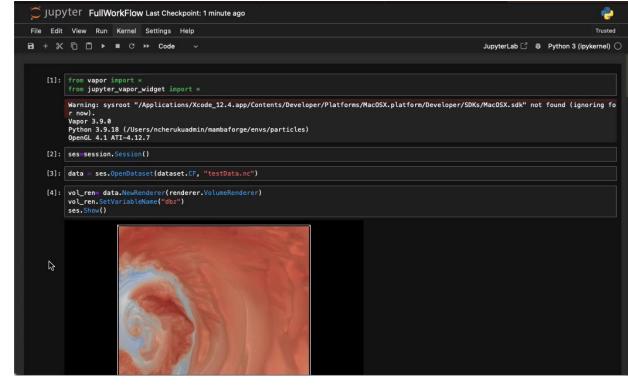
Visualization Tools for **Discovery**

VAPOR is available both as a desktop graphical application and a python library



WRF Fire, East Troublesome Wildfire Visualization: Scott Pearse Science: Juliano T, DeCastro A, Kosovic B, Edgley C

Made with VAPOR



Learn more about VAPOR

- Easy-to-use 3D visualization software
- Supports most of the commonly used data formats in geosciences
- Serving community ~20 years
- Open Source Software
- Graphical Interface and Python library

Visualization Services and Research (ViSR)

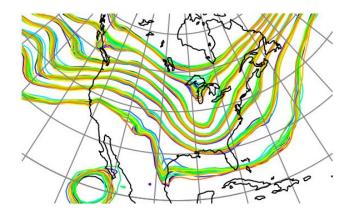
We are always eager to explore new collaboration opportunities!

- We collaborate with researchers to design **production-quality** visualizations
- We develop and maintain **VAPOR** A 3D data visualization application
- We design & develop **web interactive visualizations** for the broader audience
- We actively practice **UX methodologies** to understand societal needs and evaluate emerging technologies for visualization

Learn more about
ViSR at the
Visualization Gallery

Contact:

Nihanth Cherukuru ncheruku@ucar.edu

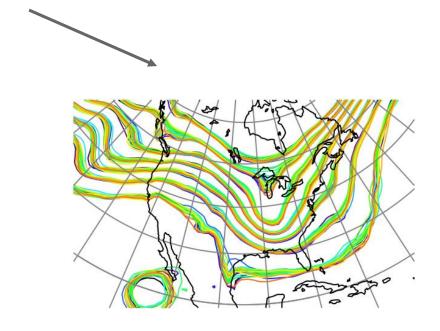


Data Assimilation

Jeff Anderson

Data Assimilation Research Section

NCAR's Data Assimilation Research Section: Data Assimilation Tools for Earth System Science



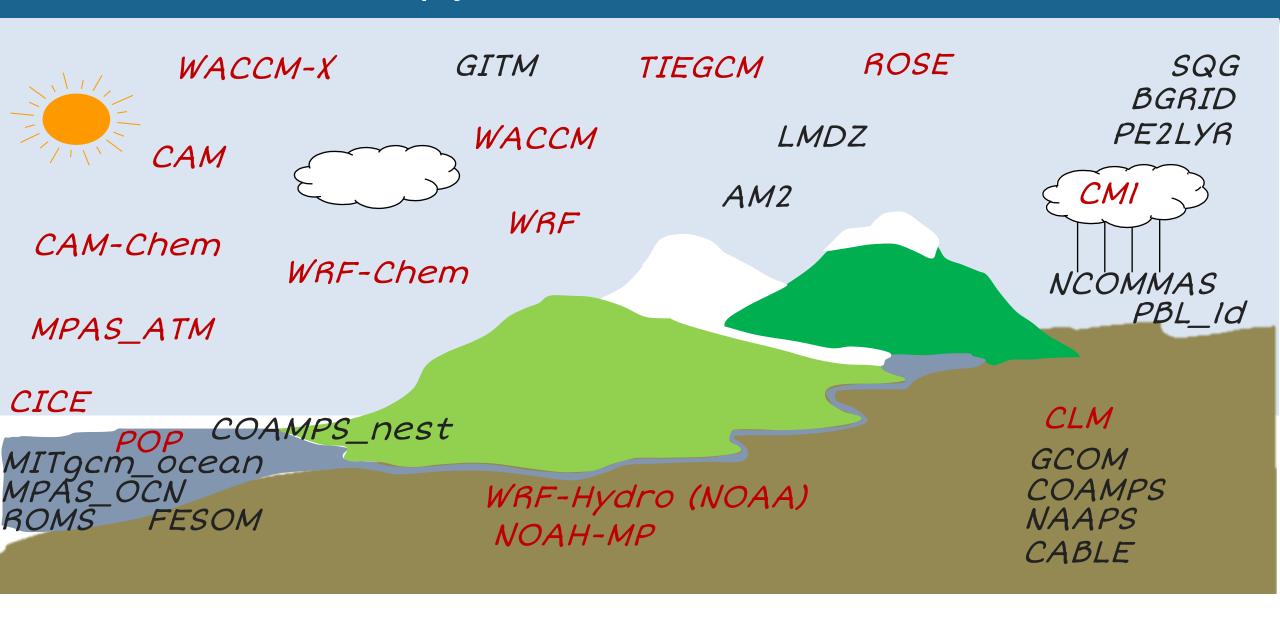
What is Data Assimilation?

Observations combined with a Model forecast...

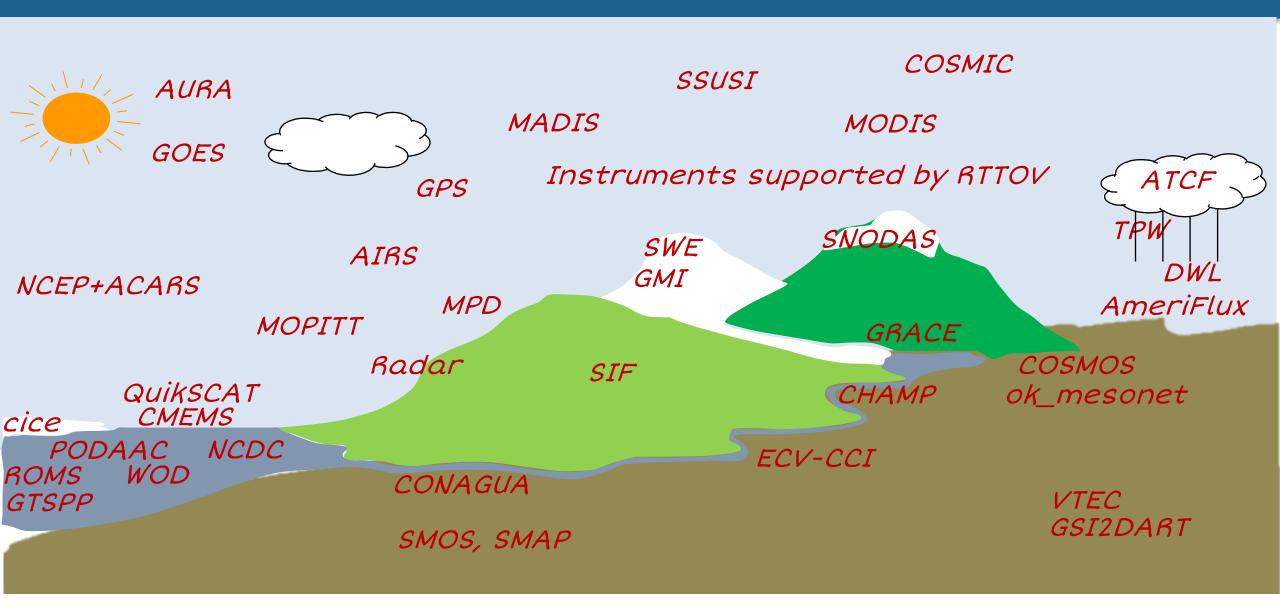
...to produce an analysis (best possible estimate).

The Data Assimilation Research Section (DAReS)

<u>Mission</u>: To accelerate progress in Earth System Science at NCAR, UCAR Universities, and in the broader science community by providing state-of-the-art ensemble DA capabilities.

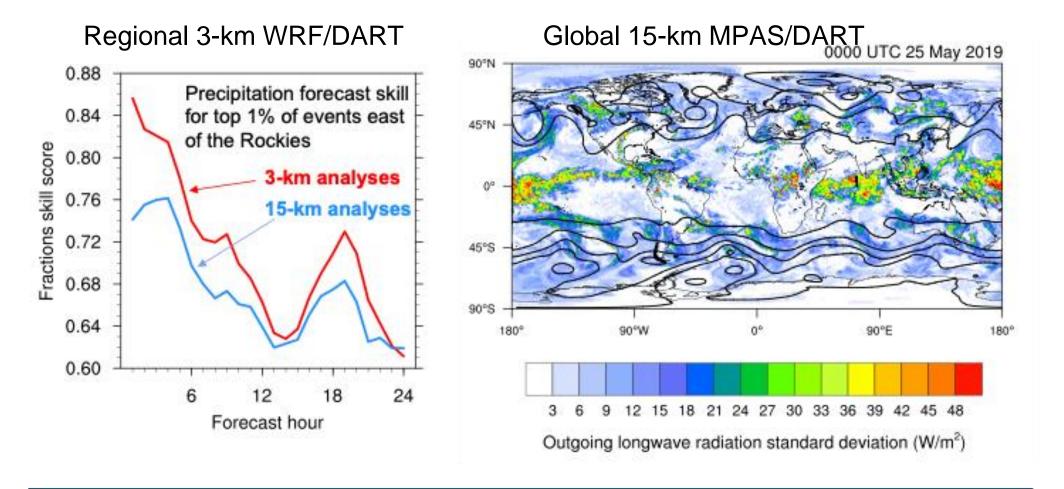

<u>Method</u>: DAReS develops and maintains the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation.

Data Assimilation Research Testbed (DART)


- > A state-of-the-art Data Assimilation System for Geoscience
- > A Data Assimilation Research System
- Professional software engineering
- ➤ People: The DAReS Team

- > State-of-the-art ensemble DA is essential for research on:
 - o Prediction
 - Predictability
 - Model development / parameter estimation
 - Observation system design / evaluation

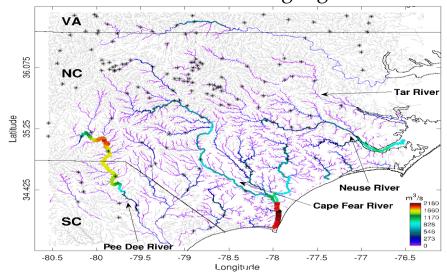
Geophysical Models Interfaced with DART



Supported Earth System Observations (others available)

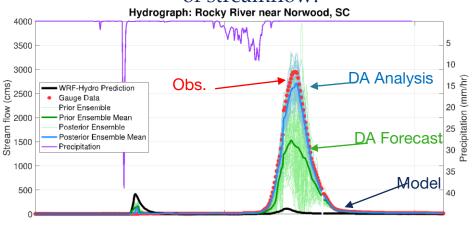
Toward Global Convection-Permitting Data Assimilation

Current capabilities with 80 ensemble members:

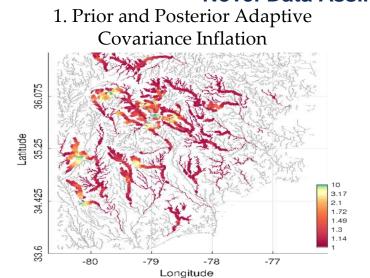


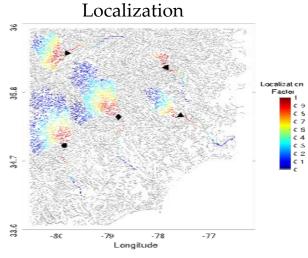
Gradual approach toward global convection-permitting ensemble-based DA

Variable-resolution meshes --- "Dual-resolution" DA ----

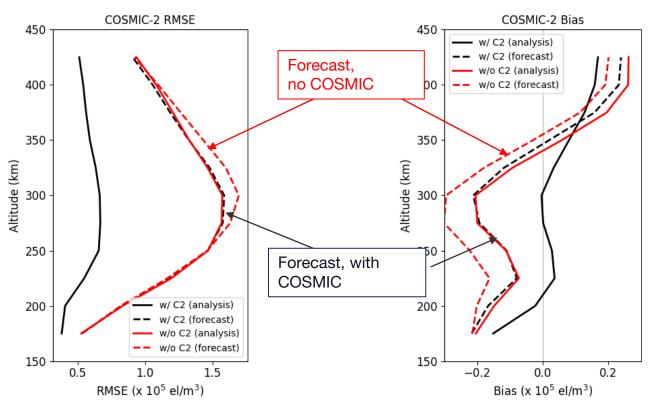

Flood Prediction: WRF-Hydro/DART for Hurricane Florence 2018

High-resolution stream network with USGS streamflow gauges.




DA greatly improves analysis and forecasts of streamflow.

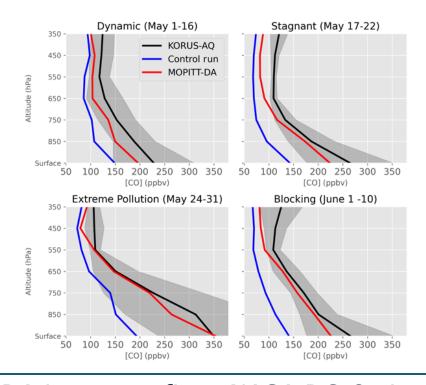
Novel Data Assimilation Science



2. Along-The-Stream (topology-based)

Space Weather: Data Assimilation Applied to Earth's Upper Atmosphere

- WACCMX+DART is first whole atmosphere DA system that can assimilate observations from the surface to ~500 km.
- Used to assess impact of new satellite missions (COSMIC2, NASA GOLD and ICON) on specifying and forecasting the space environment.
- Scientific applications:
 - Study middle-upper atmosphere variability forced by solar storms and lower atmosphere,
 - Predictability of the near-Earth space environment.

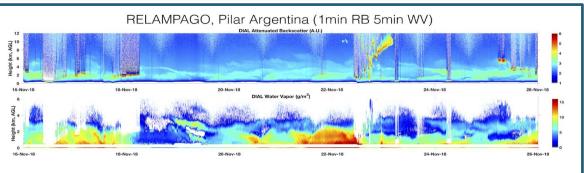


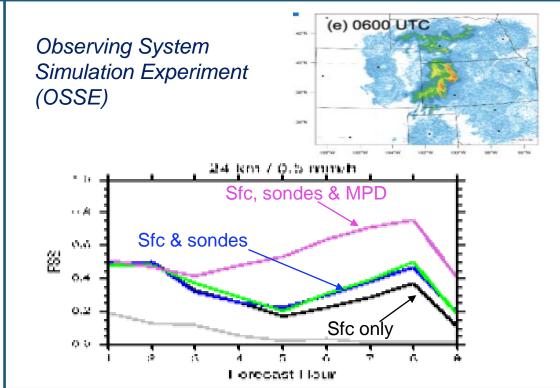
Forecast and analysis RMSE and bias compared to COSMIC-2 electron content observations.

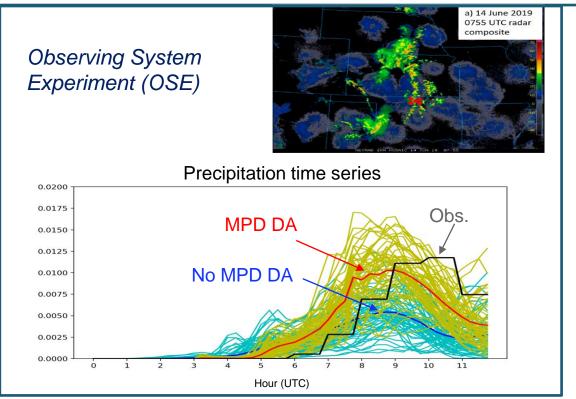
Assimilating COSMIC-2 observations during April 25-30, 2020 reduces forecast RMSE and bias by 6.4% and 28.1% at 300 km

Air Quality: Field Campaign and Satellite Data for Pollution Emission Estimation

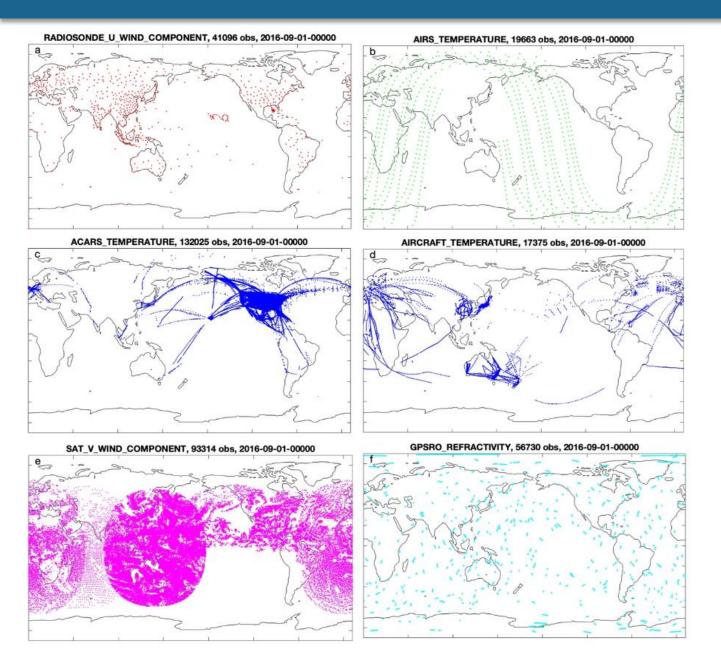
- Aircraft measurements from KORUS-AQ field study in Korea 2016
- Satellite retrievals of CO from Terra/MOPITT
- Chemistry modeling with CAM-Chem DART Ensemble Kalman Filter with:
 - Optimized CO initial conditions
 - Optimized CO emissions
- Inversion of MOPITT data updated emissions estimates, improved model performance
 - Against the KORUS-AQ aircraft observations of CO (shown) and O₃, OH, HO₂
 - Suggests underestimates of CO/VOCs in China



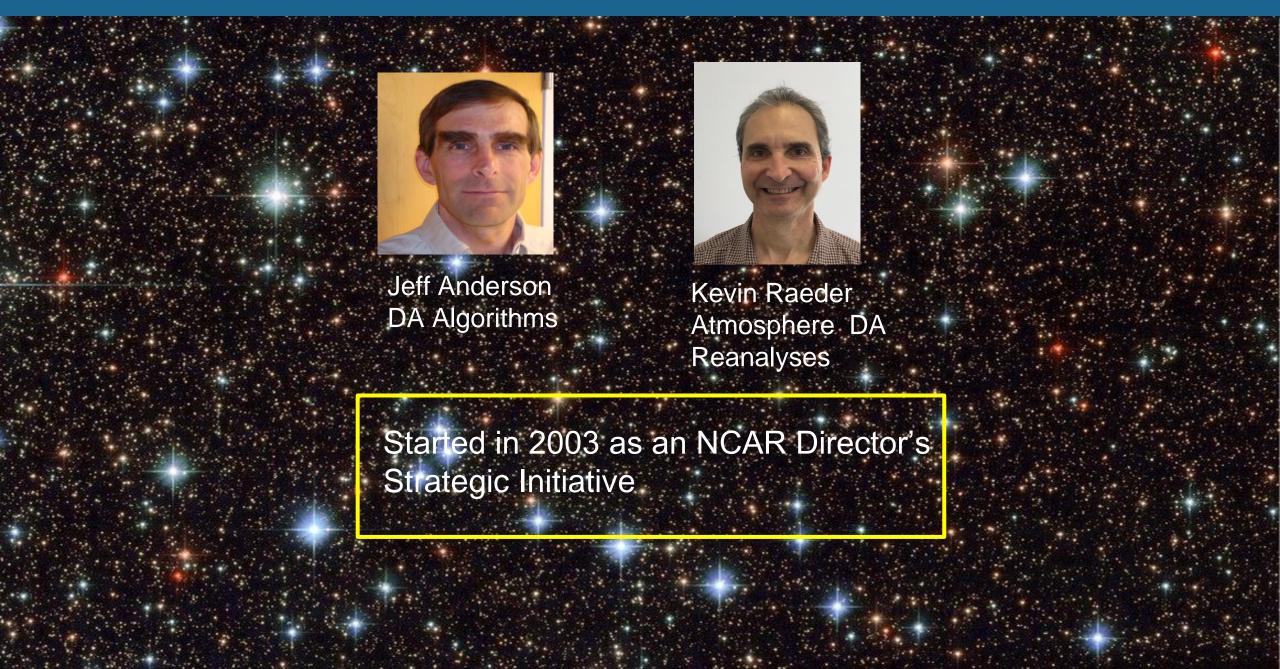

DA improves fit to NASA DC-8 aircraft CO measurements for all synoptic conditions: DA closer to obs than no DA.


Novel Observations: MPD Water Vapor Profile for Convective Weather Forecasts

MicroPulse Differential absorption lidar (MPD) developed by Montana State University and EOL measures continuous relative backscatter and water vapor profiles.



WRF/DART DA of MPD improves short-term forecasts of convection initiation and evolution compared to assimilating conventional observations (in the OSSE) and no DA (in the OSE).


Atmospheric Reanalysis Product: Community Atmosphere Model (v6)

CAM6-DART 10 Year Reanalysis:

- Observations: aircraft, radiosonde, satellite radiance, radio occultation
- 80 Ensemble Members,
- Provides forcing ensembles for other CESM models,
- Available from NCAR RDA. https://rda.ucar.edu/datasets/ds345.0/

DART: The Original System

DART: The Next Generation

Our continuing Mission: To accelerate progress in Earth System Science at NCAR, UCAR Universities, and in the broader science community by providing state-of-the-art ensemble DA capabilities.

Moha Gharamti DA Science Hydrology DA

Ben Johnson
Ocean DA
Space Weather DA

Helen Kershaw Software Engineer HPC

Brett Raczka
Land Surface DA
Weather DA

Marlee Smith Software Engineer

Dan Amrhein Ocean, Paleo DA Special CGD Guest Scientist

https://dart.ucar.edu

Artificial Intelligence/Machine Learning

Charlie Becker
Machine Learning Scientist II, MILES

Machine Learning Focus Areas

 The Machine Integration and Learning for Earth Systems (MILES) group in CISL/TDD is leading convergent machine learning research at NSF NCAR to push the boundaries of how AI/ML can be used in Earth System Science

Research

- Focus on emulation, uncertainty quantification, inverse problems, and process understanding
- Engaged in both multi-year partnerships and focused collaborations

Software

- Develop open source research platforms for using ML in ESS contexts
- Make cutting-edge ML easier to integrate with ESS observation and modeling systems

Education

Workforce development: interns, visitors, postdocs

The MILES core team at the Research Aviation Facility. (DJ, John, Gabrielle, and Charlie, L->R)

The Machine Integration and Learning for Earth Systems (MILES) Group

David John Gagne ML Scientist II CISL/RAL

John Schreck ML Scientist II CISL

Gabrielle Gantos Associate Data Associate Data Scientist II CISL

Charlie **Becker** Scientist II CISL

Yingkai "Kyle" Sha Postdoc CISL

Dhamma Kimpara Grad Intern CISL/CU

Arnold Kazadi Grad Intern CISL/Rice

MILES+WRaDS

MILES+Unidata

Thomas Martin Software Engineer

MILES+CGD

Kirsten Mayer Chapman **Project** Project Scientist I Scientist I

Will

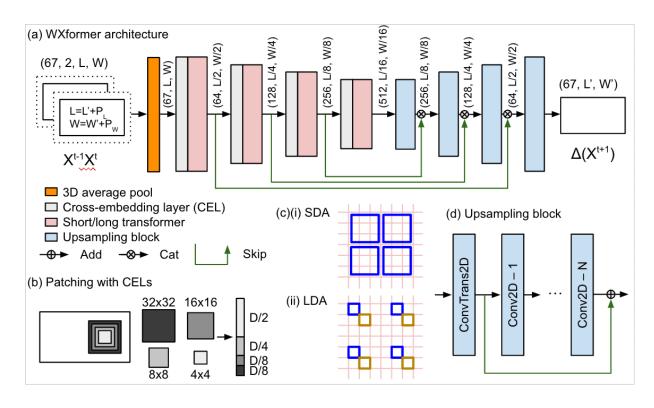
MILES+LEAP

Da Fan Postdoc

Wayne Chuang Integration Engineer

Julie Demuth Proiect Scientist III

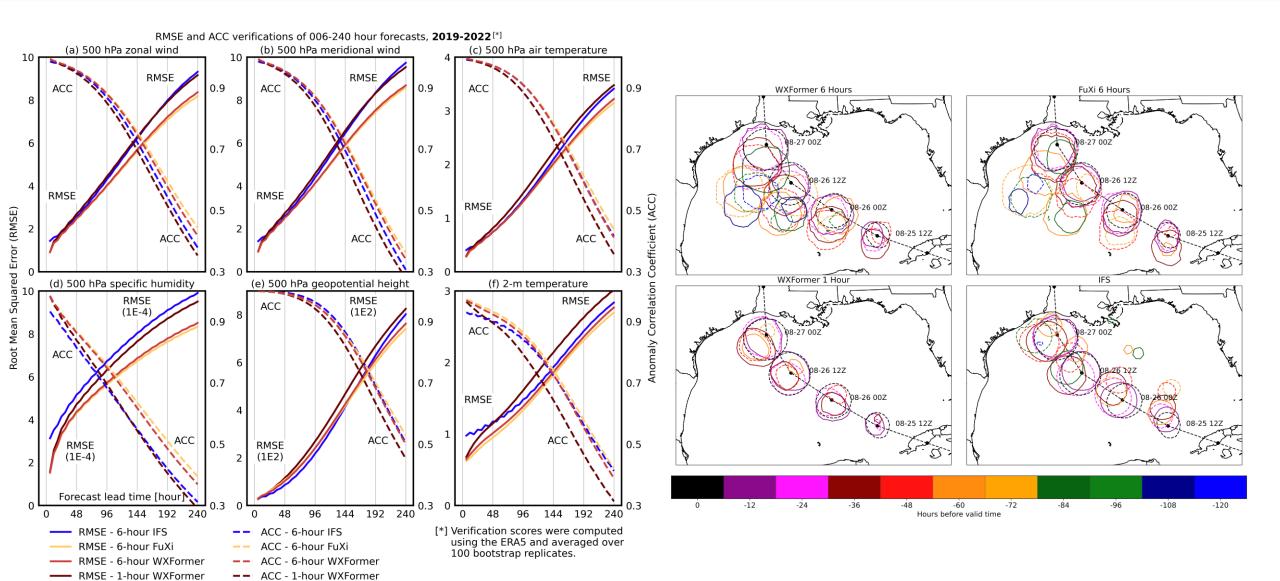
Mariana Cains **Project** Scientist I


Chris Wirz Project Scientist I

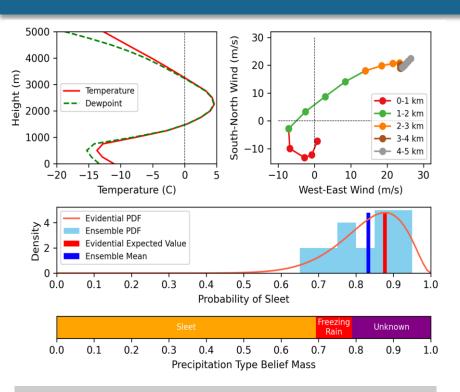
Jacob Radford Research Associate CIRA

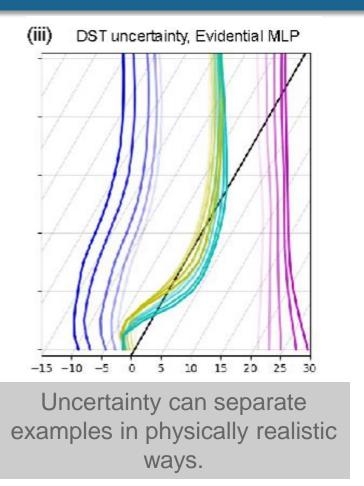
NSF NCAR Community Research Earth Digital Intelligence Twin (CREDIT)

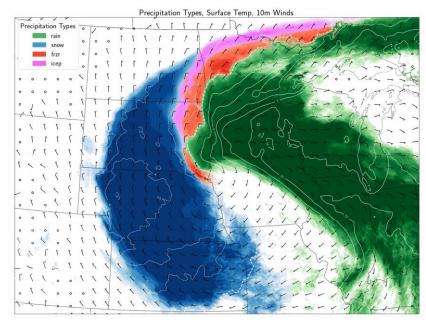
- Research platform for understanding of practices for training and operating global and regional AI weather prediction models
- Platform Features
 - Integrated pre-processing for reanalysis or reforecast data
 - Library of existing and new PyTorch neural network weather prediction architectures
 - Scalable training and inference on NCAR HPC
- Novel advances
 - Training on ERA5 model levels instead of pressure levels
 - WXFormer architecture
 - Stable hourly global model out to 5 days
 - Longer stable forecasts with multiple architectures



Team: John Schreck, Kyle Sha, Will Chapman, Dhamma Kimpara, Arnold Kazadi, Seth McGinnis, Negin Sobhani, Ben Kirk, Judith Berner, David John Gagne




CREDIT Verification



Machine Learning Uncertainty Quantification

ML models can represent predictive uncertainty through ensembles or higher-order parametric distributions.

Higher uncertainty aligns with both terrain and weather features.

MILES-GUESS: machine learning uncertainty quantification with evidential and ensemble models **Paper**: Schreck, J. et al., 2024: Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications, https://arxiv.org/abs/2309.13207

MILES: What can we offer you?

- MILES collaborates with teams across NSF NCAR labs on cutting-edge, high impact AI/ML projects
- We support software for emulators, uncertainty quantification, process understanding, and inverse problems
- We scale AI/ML workflows on NSF NCAR HPC
- We co-mentor interns, visitors, and postdocs

Interested in collaborating? Email: milescore@ucar.edu

Website: https://miles.ucar.edu

Training and Communities

Katelyn FitzGerald

NCAR HPC User Group (NHUG)

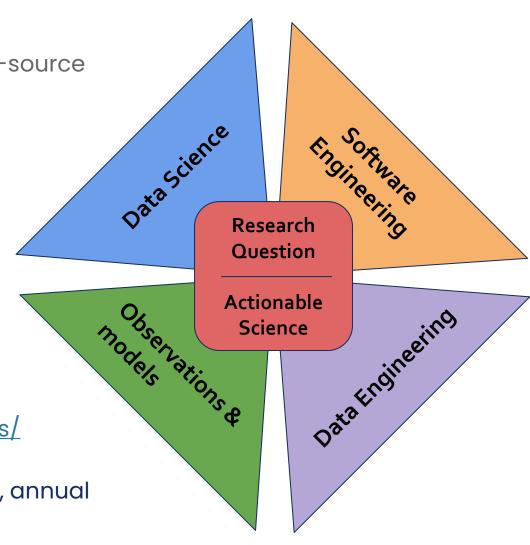
NHUG is a community dedicated to **promoting the productive use of NCAR HPC resources** and increasing collaboration among NCAR HPC users including building partnerships with university collaborators.

NHUG Activities and Resources

- NHUG Monthly Meetings: Featuring different workflows on NCAR HPC and user groups.
- NHUG Community Blog: Tips and tricks from the community for the community.
- Tutorials on different technologies.

Earth System Data Science (ESDS) Initiative

ESDS is a community with a common interest in advancing geoscientists' ability to make effective use of modern, open-source tools and technologies to support their data science needs.


Approach

Cultivate a **community of practice** encouraging:

- Open development
- Reproducible science
- Training and education
- Community building

ESDS Communication and Resources

- o Website: https://ncar.github.io/esds/
- Email list: https://groups.google.com/a/ucar.edu/g/esds/
- o **Zulip:** ncar.pub/esds-zulip
- Activities: discussion forum, office hours, biweekly forum, annual events, and more.

Project Pythia and Pythia Cookoffs

- An education and training hub for the geoscientific Python community
- Geoscience-focused Python tutorials, videos, examples & "cookbooks"
- <u>Pythia Foundations</u>: foundational skill building for scientific Python

See: projectpythia.org

Pythia Cookoffs

- Hackathon to create advanced geoscientific tutorials and workflows for <u>Pythia Cookbooks</u>.
- Collaborative, reproducible content creation using GitHub-based infrastructure.

Project Pythia: Supporting Python Learning

Dask Cookbook

nightly-build passing @ launch binder DOI 10.5281/zenodo.8157213

This Project Pythia Cookbook provides a comprehensive guide to understanding the basic concepts and collections of Dask as well as its integration with Xarray. Dask is a parallel computing library that allows you to scale your computations to multiple cores or even clusters, while Xarray is a library that enables working with labelled multi-dimensional arrays, with a focus on working with netCDF datasets.

Motivation

The motivation behind this repository is to provide a clear and concise resource for anyone looking to learn about the basic concepts of Dask and its integration with Xarray. By providing step-by-step tutorials, we hope to make it easy for users to understand the fundamental concepts of parallel computing and distributed data processing, as well as how to apply them in practice using Dask and Dask+Xarray.

Authors

Negin Sobhani, Brian Vanderwende, Deepak Cherian, and Ben Kirk

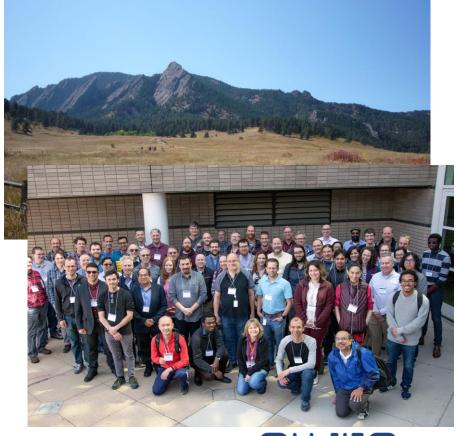
Contributors

Note on Content Origin

This cookbook is derived from the extensive material used in the NCAR tutorial, "Using Dask on HPC systems", which was held in February 2023. The NCAR tutorial series also includes an in-depth exploration and practical use cases of Dask on HPC systems and best practices for Dask on HPC. For the complete set of NCAR tutorial materials, including these additional insights on Dask on HPC, please refer to the main NCAR tutorial content available here.

Blocked Algorithms

Dask Arrays use blocked algorithms to split large computations into smaller computations which operate on subsets of the data (called **chunks**).


Let's see what this means in an example:

```
import numpy as np
import dask.array as da
# A 4x4 numpy array that goes from 1 to 16
narr = np.array([
         [ 1, 2, 3, 4],
         [5, 6, 7, 8],
        [ 9, 10, 11, 12],
        [13, 14, 15, 16]
# -- convert numpy array to dask array with 4 chunks
darr = da.from_array( narr,chunks=(2, 2))
```

Now we can calculate the sum of this array using darr.sum() similar to numpy. But how is it different from numpy?

https://projectpythia.org/dask-cookbook/README.html

Improving Scientific Software Conference (ISS)

To learn more ▶

Since 2012, the Software Engineering Assembly (SEA) has hosted an annual ISS conference highlighting novel approaches to scientific software design, maintenance, and use.

Join us!

April 7-10, 2025 at NSF-NCAR (Boulder, CO) & Virtual

We welcome any abstracts related to improvements in scientific software, particularly those focused on the following topics:

- Modern Research Software Engineering (RSE) practices (e.g. CI/CD)
- AI/ML integration in software development
- Improved usability, accessibility, and documentation
- Data analysis & visualization tools
- Software optimized for HPC and specialized hardware.

Abstract submission deadline: January 24, 2025

SIParCS - Summer Internships in Parallel Computational Science

- 11-week Summer internship
- Open to: Upper division undergrads & graduate students
- Domestic & International Students at U.S. Schools
- Project topics
 - Application Optimization
 - Data Science
 - Machine Learning
 - Numerical Methods
 - Software Engineering
 - Supercomputing Systems Operations
 - Visualization
- Support
 - Travel, Housing
 - Competitive salary

Deadline:

January 21, 2025

2025 SIParCS Undergraduate Technical Projects

Apply here

Project 1. Analysis of the Slingshot High-Speed Network

Project 2. CIRRUS - Cloud Infrastructure for Remote Research, Universities, and Scientists

Project 3. Developing Novel Capabilities for Reproducibility and Software Correctness in Regional Ocean and Climate Modeling

Project 4. HPC Outage Recovery Testing Tools

Project 5. Improving Data Center Visibility with Al

Project 6. Natural Language Discovery of NSF NCAR Scientific Data

Project 7. Project Pythia Infrastructure and Web Development

Project 8. Reimagining the UI/UX of Data Discoverability, Access, and Capabilities Within the Research Data Archive

2025 SIParCS Graduate Technical Projects

Project 8. Reimagining the UI/UX of Data Discoverability,
Access, and Capabilities within the Research Data
Archive

Project 9. Community-Driven LoRa Deployment, Open Source Integration, and Machine Learning Evaluation for Atmospheric Sensornets

Project 10. High-Performance Vector Analysis Operators in Python for Unstructured Grids

Project 11. Simulating atmospheric chemistry with python

Nitional Center for Ampospheric Research
Discover

Apply here ▶

Note: Students may apply to up to two SIParCS projects.

Questions?

CISL_Roadshows@ucar.edu

Thank you to our lunch sponsors!

Hewlett Packard Enterprise

https://www.cisl.ucar.edu/events/ams2025

Backup slides

