Responsible Al Computing Trustworthiness, Sustainability, and Equity

Al is booming...

The scaling law of Al

source: news reports, <u>LifeArchitect.ai</u> * = parameters undisclosed // see <u>the data</u>

David McCandless, Tom Evans, Paul Barton Information is Beautiful // UPDATED 20th Mar 24

MADE WITH VI7 SUBPOT

The scaling law of Al

* = parameters undisclosed // see the data

David McCandless, Tom Evans, Paul Barton Information is Beautiful // UPDATED 20th Mar 24

MADE WITH VI7 SUBPOT

Al's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024

2030

11.7

Al's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024

2030

11.7

Al's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024

2030

11.7

will consume at least 10x the electricity in 2023. [1]

Energy tolls of large language models Training

Energy tolls of large language models Training

1,066 MWh OPT 280B 1,287 MWh GPT-3 175B^[1]

4900 MWh Llama 3.1 70B

OpenAl GPT-3

21,588 MWh Llama 3.1 405B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

Energy tolls of large language models

1,066 MWh OPT 280B 1,287 MWh GPT-3 175B^[1]

4900 MWh Llama 3.1 70B

OpenAl GPT-3

21,588 MWh Llama 3.1 405B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

Energy tolls of large language models

1,066 MWh OPT 280B 1,287 MWh GPT-3 175B^[1]

4900 MWh Llama 3.1 70B

OpenAl GPT-3

21,588 MWh Llama 3.1 405B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

Tensor Par	allelism		Т	P2			T	P4			Т	'P8	
GPU Frequ	uency (GHz)	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0
Input	Output												
Short	Short		0.77	0.97	1.03	0.94	0.79	0.91	1.01	1.35	1.19	1.29	1.49
Short	Medium		2.78	3.45	3.68	3.39	2.82	3.37	3.81	4.55	4.15	4.43	4.74
Short	Long		·			4.84	4.17	4.97	5.52	6.37	5.62	5.59	6.95
Medium	Short			1.02	1.09		1.08	1.07	1.20	1.51	1.29	1.34	1.73
Medium	Medium						4.23	3.91	4.08	5.34	4.39	4.56	5.44
Medium	Long						4.99	4.66	4.53	6.86	5.79	6.52	7.12
Long	Short						1.51	1.64	1.76	2.55	2.53	2.83	2.94
Long	Medium									1	7.71	8.81	9.17
Long	Long										12.99	11.89	13.21

Tensor Parallelism		TP2			TP4				TP8				
GPU Frequ Input	uency (GHz) Output	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0
Short	Short	e	0.77	0.97	1.03	0.94	0.79	0.91	1.01	1.35	1.19	1.29	1.49
Short	Medium		2.78	3.45	3.68	3.39	2.82	3.37	3.81	4.55	4.15	4.43	4.74
Short	Long					4.84	4.17	4.97	5.52	6.37	5.62	5.59	6.95
Medium	Short			1.02	1.09		1.08	1.07	1.20	1.51	1.29	1.34	1.73
Medium	Medium						4.23	3.91	4.08	5.34	4.39	4.56	5.44
Medium	Long						4.99	4.66	4.53	6.86	5.79	6.52	7.12
Long	Short						1.51	1.64	1.76	2.55	2.53	2.83	2.94
Long	Medium										7.71	8.81	9.17
Long	Long	1.									12.99	11.89	13.21

Tensor Par	allelism		T	P2			T	P4			Т	P8	
GPU Frequ	uency (GHz)	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0
Input	Output												
Short	Short	6	0.77	0.97	1.03	0.94	0.79	0.91	1.01	1.35	1.19	1.29	1.49
Short	Medium		2.78	3.45	3.68	3.39	2.82	3.37	3.81	4.55	4.15	4.43	4.74
Short	Long					4.84	4.17	4.97	5.52	6.37	5.62	5.59	6.95
Medium	Short			1.02	1.09		1.08	1.07	1.20	1.51	1.29	1.34	1.73
Medium	Medium						4.23	3.91	4.08	5.34	4.39	4.56	5.44
Medium	Long						4.99	4.66	4.53	6.86	5.79	6.52	7.12
Long	Short						1.51	1.64	1.76	2.55	2.53	2.83	2.94
Long	Medium									10	7.71	8.81	9.17
Long	Long	4									12.99	11.89	13.21

Tensor Par	allelism		T	P2			T	P4			Т	'P8	
GPU Frequ	uency (GHz)	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0	0.8	1.2	1.6	2.0
Input	Output												
Short	Short	6	0.77	0.97	1.03	0.94	0.79	0.91	1.01	1.35	1.19	1.29	1.49
Short	Medium		2.78	3.45	3.68	3.39	2.82	3.37	3.81	4.55	4.15	4.43	4.74
Short	Long		· · · · · · · · · · · · · · · · · · ·			4.84	4.17	4.97	5.52	6.37	5.62	5.59	6.95
Medium	Short			1.02	1.09		1.08	1.07	1.20	1.51	1.29	1.34	1.73
Medium	Medium						4.23	3.91	4.08	5.34	4.39	4.56	5.44
Medium	Long						4.99	4.66	4.53	6.86	5.79	6.52	7.12
Long	Short						1.51	1.64	1.76	2.55	2.53	2.83	2.94
Long	Medium							-		10 <u></u>	7.71	8.81	9.17
Long	Long	lle-									12.99	11.89	13.21

		Liama 3 From Meta
	GPT-40	Llama 3 8B
Write an email (170 tokens)	14.9 Wh	0.641 Wh
Small Conversation (400 tokens)	35.1 wh	1.510 wh

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

		COO Llama 3 From Meta
	🔥 GPT-4	6 Llama 3 70B
Write an email (170 tokens)	190 Wh	2.13 Wh
Small Conversation (400 tokens)	$447\mathrm{Wh}$	5.02 wh

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

21.1 Hours

11 Cycle

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

21.1 Hours

11 Cycle

Carbon

Water

Water

Air Pollution

SCOPE 1 DIRECT

Purchased electricity.

heat and steam for

owned operations and

colocation IT

Carbon footprint of LLM Training

Llama 3.1 405B 8930 tons CO2eq

308,000 Apple Watches

160,000 iPhones

89,000 iPads

56,000 Surface Laptop

	Training Time (GPU hours)	Training Power Consumption (W)	Training Location- Based Greenhouse Gas Emissions (tons CO2eq)	Training Market- Based Greenhouse Gas Emissions (tons CO2eq)
Llama 3.1 8B	1.46M	700	420	0
Llama 3.1 70B	7.0M	700	2,040	0
Llama 3.1 405B	30.84M	700	8,930	0
Total	39.3M		11,390	0

Location Based

"

A Example: If your company consumes 100,000 kWh of *electricity* in the UK, with a *grid emission factor* of 0.21233 kgCO₂e/kWh, the calculation would be:

 $100,000 \, kWh \, x \, 0.21233 \, kgCO_2 e/kWh = 21,233 \, kgCO_2 e \, or \, 21.23 \, tCO_2 e.$

Market Based

"

싕 Example:

If your company consumes 100,000 kWh of electricity but buys 100% renewable energy through a REC, the emissions factor is 0 kgCO₂e/kWh. Your Scope 2 emissions would be:

 $100,000 \, kWh \, x \, 0 \, kgCO_2 e/kWh = 0 \, kgCO_2 e.$

"

Market Based

A Example: 100,000 kWh x 0.316 kgCO₂e/kWh = 31,600 kgCO₂e or 31.60 tCO₂e.

Carbon footprint of LLM Location-based vs market-based

Renewable Energy Certificates (One-Time Purchase)

\$10.00 per MWh

In an ideal world, we would all have small wind farms in our backyards that generate exactly the amount of energy we need to power our homes. But let's face it, that's pretty tough to do. However, anyone can purchase renewable energy credits. Calculate your personal carbon footprint with our online calculator.

Purchase Personal RECs

Enter the annual US average (11 MWh) for your home's RECs or check your utility bill for specific usage.

The avg. US household consumes about 11 Megawatt hours (MWh) of electricity / year.

QUANTITY (MWH)

Product Price \$10

RECIPIENT NAME *

Add to cart

All regions are not equal

Source: ElectricityMaps (April 27, 2024)

All regions are not equal

Data center water footprint

Data center water footprint

Onsite Water WUE (based on an example cooling tower)

$$WUE_{on} = \frac{S}{S-1} \left(6 \times 10^{-5} \cdot T_{w}^{3} - 0.01 \cdot T_{w}^{2} + 0.61 \cdot T_{w} - 10.40 \right)$$

Offsite Water WUE

$$E_{off} = \frac{\sum_{k} b_k \times EWIF_k}{\sum_{k} b_k}$$

Onsite Water WUE (based on an example cooling tower)

$$WUE_{on} =$$

Offsite Water WUE

$$\frac{S}{S-1} \left(6 \times 10^{-5} \cdot T_{\rm w}^3 - 0.01 \cdot T_{\rm w}^2 + 0.61 \cdot T_{\rm w} - 10.40 \right)$$

Number of Cycles

$$E_{off} = \frac{\sum_{k} b_k \times EWIF_k}{\sum_{k} b_k}$$

Onsite Water WUE (based on an example cooling tower)

$$WUE_{on} =$$

Offsite Water WUE

$$E_{off} = \frac{\sum_{k} b_k \times EWIF_k}{\sum_{k} b_k}$$

Onsite Water WUE (based on an example cooling tower)

$$WUE_{on} =$$

Offsite Water WUE

$$E_{off} = \frac{\sum_{k} b_k \times EWIF_k}{\sum_{k} b_k}$$
Estimated energy water intensity factor (EWIF) of each energy source

Hourly carbon efficiency and WUE

Hourly carbon efficiency and total WUE for the first week of August 2022.

Estimated # of GPT-3 response for 500mL water

Location	PUE	WUE (L/kWh)	${ m EWIF}\ ({ m L/kWh})$	Water for Training (Million L)	Water for Each Request (mL)	# of Requests for 500ml Water
U.S. Average	1.17	0.55	3.142	5.439	16.904	29.6
Wyoming	1.125	0.23	2.574	4.023	12.503	40
Iowa	1.16	0.19	3.104	4.879	15.163	33
Arizona	1.223	2.24	4.959	10.688	33.219	15.1
Washington	1.156	1.09	9.501	15.539	48.294	10.4
Virginia	1.144	0.17	2.385	3.73	11.593	43.1
Texas	1.307	1.82	1.287	4.507	14.009	35.7
Singapore	1.358	2.06	1.199	4.747	14.753	33.9
Ireland	1.197	0.03	1.476	2.313	7.189	69.6
Netherlands	1.158	0.08	3.445	5.237	16.276	30.7
Sweden	1.172	0.16	6.019	9.284	28.856	17.3

Estimated # of GPT-3 response for 500mL water

Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren, "Making AI Less 'Thirsty': Uncovering and Addressing the Secret Water Footprint of AI Models," 2023.

Al's water footprint is being uncovered...

Al's water footprint is being uncovered...

VIDEO

What's under the hood

Water

Air Pollution

Intelligent Al workload management Example: carbon-ware computing

Google

		••••	••••							
		••••	••••	••••						1
	•••	••••	•••	••••	••••				••••	1
	••••	•••	••••	•••	••••	••••			•••	
	••••			••••		••••	••••	••••		
	••••	•••		••••		••••	••••	••••	••••	
	••••	••••	••••			••••			••••	
	••••	•••		•••	••••	••••		••••	••••	l
MIDNICHT				M	DRNING					

Intelligent Al workload management Example: carbon-ware computing

Google

		••••	••••							
		••••	••••	••••						1
	•••	••••	•••	••••	••••				••••	1
	••••	•••	••••	•••	••••	••••				
	••••			••••		••••	••••	••••		
	••••	•••		••••		••••	••••	••••	••••	
	••••	••••	••••			••••			••••	
	••••	•••		•••	••••	••••		••••	••••	l
MIDNICHT				M	DRNING					

Intelligent Al workload management Example: carbon-ware computing

Intelligent AI workload management Example: carbon-ware computing

Demand

T = **0**

Servers

Demand

T = 1

Servers

Demand

T = 2

Servers

Demand

T = 2

Servers

Responsbile Al computing Three main component

Sustainable Al

[**L**YIR, CACM' 23] [GHLIR, eEnergy' 24] [LWR, HotCarbon' 24] [LLWR, HotEthics' 24]

Equitable AI system

[LY<u>L</u>LR, ICML' 24] [LYWR, eEnergy' 24]

Trustworthy ML-augmented algorithms

[LYR, SIGMETRICS' 22] [YLR, NeurIPS' 23] [LYR, NeurIPS' 23] [**L**YR, ICML' 23] [LYR, INFOCOM' 23] [YLIR, SIGMETRICS' 24] [LYWR, SIGMETRICS' 25]

Smooth Online Convex Optimization (SOCO)

Goal

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Goal

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Goal

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Goal

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Online Decision Making

 $y_1, x_1, y_2, x_2, y_3, x_3 \dots$

Problem formulation Smoothed Online Convex Optimization (SOCO)

Metrics

Goal

 $AVG(\pi) = \mathbb{E}\left[cost(\pi, s)\right]$

Average Cost

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Online Decision Making

 $y_1, x_1, y_2, x_2, y_3, x_3 \dots$

$$CR(\pi) = \sup_{s \in \mathcal{S}} \frac{cost(\pi, s)}{cost(\pi^*, s)}$$

Competitive Ratio

A Greedy policy: Minimize hitting cost

 $x_t = \arg\min f(x_t, y_t)$ $x_t \in \mathbb{X}$

The hitting cost is minimized, but we may pay too much switching cost.

Worst-case vs average-case

28

Expert algorithms (EXP)

ML advice (ML)

Performance

Expert algorithms (EXP)

ML advice (ML)

Performance

Expert algorithms (EXP)

Mathematical formulation of the goal

Robustness $cost(ALG) \le (1 + \lambda) \cdot cost(EXP)$

Consistency $cost(ALG) \leq C(\lambda) \cdot cost(ML)$

 $\forall y_{1:T} \in \mathscr{Y}$

Mathematical formulation of the goal

Robustness $cost(ALG) \le (1 + \lambda) \cdot cost(EXP)$

Tradeoff parameter λ

 $cost(ALG) \leq C(\lambda) \cdot cost(ML)$ Consistency

Mathematical formulation of the goal

Robustness $cost(ALG) \le (1 + \lambda) \cdot cost(EXP)$

Tradeoff parameter λ

Consistency $cost(ALG) \le C(\lambda) \cdot cost(ML)$

Constraint. (Given $\lambda \ge 1$)

 $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \le \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \right) + B$

30

Constraint. (Given $\lambda \ge 1$) Our algorithm cost Expert cost $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \le \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}^{\pi}, y_{\tau}) + c(x_{\tau}^{\pi}, x_{\tau-1}^{\pi}) \right) + B$

30

Constraint. (Given $\lambda \ge 1$) Our algorithm cost

Why?

What if

 $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \right) + B$ $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_t) > \lambda \left(f(x_{t+1}^{\pi}, y_{t+1}) + c(x_{t+1}^{\pi}, x_t^{\pi}) \right) \quad \forall x_{t+1} \in \mathcal{X}$

30

Constraint. (Given $\lambda \ge 1$)

Why?

What if

 $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau}, x_{\tau})$ $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_{t})$

30

Constraint. (Given $\lambda \ge 1$) Our algorithm cost

Why?

What if

 $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau}, x_{\tau})$ $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_{t})$

Take home message

Your current action will have some unknown future impacts. Only considering the current cost is not enough

30

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $x_t =$

 $s \cdot t \cdot , \text{COSt}(x_{1:t-1}) + f(x, y_t) + c$

 X_t

$$\arg\min_{x\in\mathscr{X}} \|x - \tilde{x}_t\|^2$$

$$f(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \operatorname{COSt}(x_{1:t}^{\pi})$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $X_t = a$

 $s \cdot t \cdot , \text{COSt}(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + c(x_{1:t-$

 X_t

$$\arg\min_{x\in\mathcal{X}} \|x - \tilde{x}_t\|^2$$
$$(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \operatorname{Cost}(x_{1:t}^{\pi})$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $X_t = a$

 $s \cdot t \cdot , \text{COSt}(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + c(x_{1:t-$

$$\arg\min_{x\in\mathcal{X}} \|x - \tilde{x}_t\|^2$$

(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \operatorname{cost}(x_{1:t}^{\pi})

$$x_t^{\pi}) = \|x - x_t^{\pi}\|$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $x_t =$

 $s \cdot t \cdot , \text{COSt}(x_{1:t-1}) + f(x, y_t) + c$

$$\arg\min_{x\in\mathcal{X}} \|x - \tilde{x}_t\|^2$$

$$F(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \text{cost}(x_{1:t}^{\pi})$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $X_t =$

 $s \cdot t \cdot , \text{COSt}(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + f(x, y_t) + c(x_{1:t-1}) + c(x_{1:t-$

$$\begin{aligned} x_t &= \arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2 \\ t_t) + c(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \text{cost}(x_{1:t}^{\pi}) \\ \hline G(x, x_t^{\pi}) &= \|x - x_t^{\pi}\| \end{aligned}$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $x_t =$

 $s \cdot t \cdot , \text{cost}(x_{1:t-1}) + f(x, y_t) + c$

G(x,

$$\arg\min_{x\in\mathscr{X}} \|x - \tilde{x}_t\|^2$$
$$(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \operatorname{cost}(x_{1:t}^{\pi})$$

$$x_t^{\pi}) = \|x - x_t^{\pi}\|$$

Consider the L_p norm $d(\cdot, \cdot)$ as switching cost. For each step $t = 1, 2, \cdots$

 $x_t =$

 $s \cdot t \cdot , \text{cost}(x_{1:t-1}) + f(x, y_t) + c$

$$\arg\min_{x\in\mathcal{X}} \|x - \tilde{x}_t\|^2$$
$$(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda) \operatorname{cost}(x_{1:t}^{\pi})$$

$$x_t^{\pi}) = \|x - x_t^{\pi}\|$$

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t 2:
- Expert chooses x_t^{π} 3:
- $\tilde{x}_t \leftarrow h(x_{t-1}, y_t)$ //Action output from ML 4:
- 5:

$$x_{t-1} \longrightarrow$$

Input: $\lambda \ge 1, B \ge 0$, initial x_0 , trained ML model (Section 4.3), and expert online algorithm π

 $x_t \leftarrow \operatorname{proj}(\tilde{x}_t, x_t^{\pi}, \operatorname{cost}(x_{1:t-1}), \operatorname{cost}(x_{1:t}^{\pi}))$ based on Eqn. (2) //Robustification

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t 2:
- Expert chooses x_t^{π} 3:

4:
$$\tilde{x}_t \leftarrow h(x_{t-1}, y_t)$$
 //Action output

5:
$$x_t \leftarrow \operatorname{proj}(\tilde{x}_t, x_t^{\pi}, \operatorname{cost}(x_{1:t-1}), \operatorname{cost}(x_{1:t-1}^{\pi}))$$

Input: $\lambda \ge 1, B \ge 0$, initial x_0 , trained ML model (Section 4.3), and expert online algorithm π

t from ML (t_t)) based on Eqn. (2) //Robustification

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t 2:
- Expert chooses x_t^{π} 3:

4:
$$\tilde{x}_t \leftarrow h(x_{t-1}, y_t)$$
 //Action output

5:
$$x_t \leftarrow \operatorname{proj}(\tilde{x}_t, x_t^{\pi}, \operatorname{cost}(x_{1:t-1}), \operatorname{cost}(x_{1:t-1}^{\pi}))$$

Input: $\lambda \ge 1, B \ge 0$, initial x_0 , trained ML model (Section 4.3), and expert online algorithm π

t from ML (t_t)) based on Eqn. (2) //Robustification

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t 2:
- Expert chooses x_t^{π} 3:

5

4:
$$\tilde{x}_t \leftarrow h(x_{t-1}, y_t)$$
 //Action output

$$: x_t \leftarrow \operatorname{proj}(\tilde{x}_t, x_t^{\pi}, \operatorname{cost}(x_{1:t-1}), \operatorname{cost}(x_{1:t-1}^{\pi}))$$

Input: $\lambda \ge 1, B \ge 0$, initial x_0 , trained ML model (Section 4.3), and expert online algorithm π

t from ML (t_t)) based on Eqn. (2) //Robustification

Theoretical Analysis

ML-Expert Discrepancy

 $\rho(y) = \max_{t=1,\cdots,T}$

Bi-Competitive Ratio

$$CR \le \min\left\{ (1+\lambda)CR^{\pi}, \left(\sqrt{\tilde{CR}} + \sqrt{CR^{\pi}} \left[1 + \sqrt{\frac{\beta_h + (1+L_1)^2}{2}\rho} - \sqrt{1+\lambda}\right]^+\right)^2 \right\},$$

Robustness Consistency

$$\frac{\|\tilde{x}_t - x_t^{\pi}\|^2}{f(x_t^{\pi}, y_t) + d(x_t^{\pi}, x_{t-1}^{\pi})}.$$

35

35

Hitting Cost: $f(x_t, y_t)$

Hitting Cost: $f(x_t, y_t)$

Switching Cost: $c(x_t, x_{t-1})$

Listen to the local voice Localized environmental burdens

Listen to the local voice Localized environmental burdens

A new front in the wa internet use In the American West, data centers are clashing with local

An energy crunch forces continued coal burning in a low-income area as data centers strain the regional power supply.

റെ 10 min

By Shannon Osaka

POWER GRAB

A utility promised to stop burning coal. Then Google and Meta came to town.

口 375

je New York Eimes

rgy, Amazon, Google urn to Nuclear Power

es are investing billions of dollars in ons-free source of electricity for er businesses.

Long-term Regularized Online Optimization

Problem formulation

Hitting cost Goal $\min_{x_t \in \mathbb{X}} \sum_{t=1}^T f(x_t, y_t) + c(x_t, x_{t-1}) + h(\sum_{t=1}^T p(x_t, a_t))$

Metrics

 $\operatorname{AVG}(\pi) = \mathbb{E}\left[\operatorname{cost}(\pi, s)\right]$

Average Cost

Switching cost

$$CR(\pi) = \sup_{s \in \mathcal{S}} \frac{cost(\pi, s)}{cost(\pi^*, s)}$$

Competitive Ratio

Problem formulation

Hitting cost Goal $\min_{x_t \in \mathbb{X}} \sum_{t=1}^T f(x_t, y_t) + c(x_t, x_{t-1}) + h(\sum_{t=1}^T p(x_t, a_t))$ Switching cost

Metrics

 $\operatorname{AVG}(\pi) = \mathbb{E}\left[\operatorname{cost}(\pi, s)\right]$

Average Cost

Long-term cost

Online Decision Making $(y_1, c_1), x_1, (y_2, c_2), x_2 \dots$

$$CR(\pi) = \sup_{s \in \mathcal{S}} \frac{cost(\pi, s)}{cost(\pi^*, s)}$$

Competitive Ratio

A premier algorithm (R - OBD)

At each time t, receive context y_t • $v_t \leftarrow \arg\min f(x, y_t)$ • $x_t \leftarrow \arg\min f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t)$ \mathcal{X}

Online Decision Making

 $y_1, x_1, y_2, x_2 \dots$

A premier algorithm (R - OBD)

At each time t, receive context y_t • $v_t \leftarrow \arg \min_{x} f(x, y_t)$ • $x_t \leftarrow \arg \min_{x} f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t)$ \mathcal{X}

$$+ h(\sum_{t=1}^{T} p(x_t, a_t))$$

Online Decision Making $(y_1, a_1), x_1, (y_2, a_2), x_2 \dots$

A premier algorithm (R - OBD)

At each time t, receive context y_t • $v_t \leftarrow \arg\min f(x, y_t)$ • $x_t \leftarrow \arg\min f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t)$ \mathcal{X}

+
$$h(\sum_{t=1}^{T} p(x_t, a_t))$$

Online Decision Making $(y_1, a_1), x_1, (y_2, a_2), x_2 \dots$

Problem reformulation

Objective function

Problem reformulation

Objective function

Problem reformulation

Objective function

Decoupled cost z_t is the location-wise "budget"

Equity-aware online optimization

 $\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^{I} \left[f(x_t, y_t) + c(x_t, x_{t-1}) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right) \right]$

42

Equity-aware online optimization

$\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, x_{t-1}) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right) \right]$

42

$$\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg\min_{x \in \mathcal{X}} f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t) + \mu_t \cdot p(x, a_t)$ • $z_t = \min_{z \in \mathcal{Z}} h(z) - \mu_t z_t$ $\mu = \arg\min\langle z_t - p(x, a_t) \rangle + \frac{1}{n} V_h(\mu, \mu_t)$

$$\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg\min_{x \in \mathcal{X}} f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t) + \mu_t \cdot p(x, a_t)$ • $z_t = \min_{z \in \mathscr{Z}} h(z) - \mu_t z_t$ $\mu = \arg\min\langle z_t - p(x, a_t) \rangle + \frac{1}{n} V_h(\mu, \mu_t)$

$$\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg\min_{x \in \mathcal{X}} f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t) + \mu_t \cdot p(x, a_t)$ • $z_t = \min_{z \in \mathscr{Z}} h(z) - \mu_t z_t$ $\mu = \arg\min\langle z_t - p(x, a_t) \rangle + \frac{1}{n} V_h(\mu, \mu_t)$

$$\min_{x_t \in \mathbb{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg\min_{x \in \mathcal{X}} f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, v_t) + \mu_t \cdot p(x, a_t)$ • $z_t = \min_{z \in \mathcal{Z}} h(z) - \mu_t z_t$ $\mu = \arg\min\langle z_t - p(x, a_t) \rangle + \frac{1}{-}V_h(\mu, \mu_t)$

Theorem (informal)

When $T \to \infty$, for any finite R, the cost of eGLB satisfies $cost(eGLB) \le C \cdot cost(OPT^*) + O\left(\sqrt{\frac{1}{T}}\right) + \frac{L \cdot \delta}{T}$

Theorem (informal) When $T \to \infty$, for any finite R, the cost of eGLB satisfies

$cost(eGLB) \le C \cdot cost(OPT^*) + O\left(\sqrt{\frac{1}{T}}\right) + \frac{L \cdot \delta}{T}$

Theorem (informal) When $T \to \infty$, for any finite R, the cost of eGLB satisfies $cost(eGLB) \le C \cdot cost(OPT^*) + O\left(\sqrt{\frac{1}{T}}\right) + \frac{L \cdot \delta}{T}$

Theorem (informal)

A case study

Country State/Province		City	Total WUE (m ³ /MWh)	Carbon Intensity (ton/MWh)	Energy Price (\$/MWh)	
U.S.	Texas	Midlothian	5.7397	0.4011	64.931	=
U.S.	Virginia	Loudoun	5.9755	0.3741	77.793	-
U.S.	Georgia	Douglas	5.9001	0.4188	80.566	-
U.S.	Nevada	Storey	4.9306	0.2980	84.738	2 22
Germany	Hessen	Frankfurt	4.5889	0.3295	315.233	
Belgium	Hainaut	Saint-Ghislain	4.9316	0.4802	247.083	_
Netherlands	Groningen	Eemshaven	3.0928	0.4454	248.258	
Denmark	Fredericia	Fredericia	3.8900	0.1391	213.773	
Japan	Chiba Prefecture	Inzai	2.4989	0.3280	129.269	5 23
Singapore	Singapore	Jurong West	5.8652	0.5260	155.462	

- 10 different data center locations (4 in the US, 4 in Europe, and 2 in Asia)
- BLOOM inference trace (scaled up)
- Environmental costs: Water and carbon footprints

A case study

Metric		Algorithm							
		GLB-Energy	GLB-Carbon	GLB-Water	GLB-C2	GLB-All	GLB-Nearest	eGLB-Off	eGLB
Energy (US\$)	avg	279620	454608	539847	326104	312372	450992	341998	359433
Water (m ³)	avg	14329.6	12992.8	11694.2	13822.4	13338.4	13584.9	13439.3	13591.5
	max	23753.4	24779.5	19478.0	25154.2	21307.6	19662.3	16339.6	18199.0
	max/avg	1.66	1.91	1.67	1.82	1.60	1.45	1.22	1.34
Carbon (ton)	avg	1098.29	830.66	947.89	925.28	975.76	1035.97	951.91	977.92
	max	1868.37	1544.89	2110.61	1566.99	1656.06	1342.44	1202.91	1294.23
	max/avg	1.70	1.86	2.23	1.69	1.70	1.30	1.26	1.32

A case study

Metric		Algorithm							
		GLB-Energy	GLB-Carbon	GLB-Water	GLB-C2	GLB-All	GLB-Nearest	eGLB-Off	eGLB
Energy (US\$)	avg	279620	454608	539847	326104	312372	450992	341998	359433
Water (m ³)	avg	14329.6	12992.8	11694.2	13822.4	13338.4	13584.9	13439.3	13591.5
	max	23753.4	24779.5	19478.0	25154.2	21307.6	19662.3	16339.6	18199.0
	max/avg	1.66	1.91	1.67	1.82	1.60	1.45	1.22	1.34
Carbon (ton)	avg	1098.29	830.66	947.89	925.28	975.76	1035.97	951.91	977.92
	max	1868.37	1544.89	2110.61	1566.99	1656.06	1342.44	1202.91	1294.23
	max/avg	1.70	1.86	2.23	1.69	1.70	1.30	1.26	1.32

A case study

Metric		Algorithm							
		GLB-Energy	GLB-Carbon	GLB-Water	GLB-C2	GLB-All	GLB-Nearest	eGLB-Off	eGLB
Energy (US\$)	avg	279620	454608	539847	326104	312372	450992	341998	359433
Water (m ³)	avg	14329.6	12992.8	11694.2	13822.4	13338.4	13584.9	13439.3	13591.5
	max	23753.4	24779.5	19478.0	25154.2	21307.6	19662.3	16339.6	18199.0
	max/avg	1.66	1.91	1.67	1.82	1.60	1.45	1.22	1.34
Carbon (ton)	avg	1098.29	830.66	947.89	925.28	975.76	1035.97	951.91	977.92
	max	1868.37	1544.89	2110.61	1566.99	1656.06	1342.44	1202.91	1294.23
	max/avg	1.70	1.86	2.23	1.69	1.70	1.30	1.26	1.32

A case study

Metric		Algorithm							
		GLB-Energy	GLB-Carbon	GLB-Water	GLB-C2	GLB-All	GLB-Nearest	eGLB-Off	eGLB
Energy (US\$)	avg	279620	454608	539847	326104	312372	450992	341998	359433
Water (m ³)	avg	14329.6	12992.8	11694.2	13822.4	13338.4	13584.9	13439.3	13591.5
	max	23753.4	24779.5	<u>19478.0</u>	25154.2	21307.6	19662.3	16339.6	18199.0
	max/avg	1.66	1.91	1.67	1.82	1.60	1.45	1.22	1.34
Carbon (ton)	avg	1098.29	830.66	947.89	925.28	975.76	1035.97	951.91	977.92
	max	1868.37	1544.89	2110.61	1566.99	1656.06	1342.44	1202.91	1294.23
	max/avg	1.70	1.86	2.23	1.69	1.70	1.30	1.26	1.32

A case study

Metric		Algorithm							
		GLB-Energy	GLB-Carbon	GLB-Water	GLB-C2	GLB-All	GLB-Nearest	eGLB-Off	eGLB
Energy (US\$)	avg	279620	454608	539847	326104	312372	450992	341998	359433
Water (m ³)	avg	14329.6	12992.8	11694.2	13822.4	13338.4	13584.9	13439.3	13591.5
	max	23753.4	24779.5	19478.0	25154.2	21307.6	19662.3	16339.6	18199.0
	max/avg	1.66	1.91	1.67	1.82	1.60	1.45	1.22	1.34
Carbon (ton)	avg	1098.29	830.66	947.89	925.28	975.76	1035.97	951.91	977.92
	max	1868.37	1544.89	2110.61	1566.99	1656.06	1342.44	1202.91	1294.23
	max/avg	1.70	1.86	2.23	1.69	1.70	1.30	1.26	1.32

eGLB mitigates Al's environmental inequity (at a small cost)

Thanks

Q & A