Responsible AI Computing Trustworthiness, Sustainability, and Equity

AI is booming…

The scaling law of AI

* = parameters undisclosed // see the data

MADE WITH VIZSINPPL

The scaling law of AI

* = parameters undisclosed // see the data

MADE WITH VI7SIDPPT.

AI's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris <https://www.iea.org/reports/electricity-2024>

2030

 11.7

AI's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris <https://www.iea.org/reports/electricity-2024>

2030

 11.7

AI's growing appetite for energy

Terawatt-hours (TWh) of electricity demand, medium scenario

2030

 11.7

will consume at least 10x the electricity in 2023. [1]

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI's hunger for power [2] IEA (2024), Electricity 2024, IEA, Paris <https://www.iea.org/reports/electricity-2024>

1,066 MWh OPT 280B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

21,588 MWh Llama 3.1 405B

1,287 MWh GPT-3 175B [1]

4900 MWh Llama 3.1 70B

OpenAI GPT-3

1,066 MWh OPT 280B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

21,588 MWh Llama 3.1 405B

1,287 MWh GPT-3 175B [1]

4900 MWh Llama 3.1 70B

OpenAI GPT-3

1,066 MWh OPT 280B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in "Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of LLM-Powered Intelligent Chatbots"

21,588 MWh Llama 3.1 405B

1,287 MWh GPT-3 175B [1]

4900 MWh Llama 3.1 70B

OpenAI GPT-3

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

 (1)

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

21.1 Hours 11 Cycle

0.76 Miles

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

2.89 Cycle

21.1 Hours 11 Cycle

Carbon

Carbon Water Air Pollution

Purchased electricity. heat and steam for

owned operations and

colocation IT

EE

Carbon footprint of LLM Training

56,000 Surface Laptop

Llama 3.1 405B 8930 tons CO2eq

89,000 iPads

308,000 Apple Watches

Location Based

"

Example: If your company consumes 100,000 kWh of electricity in the UK, with a grid emission factor of 0.21233 kgCO₂e/kWh, the calculation would be:

100,000 kWh x 0.21233 kgCO2e/kWh = 21,233 kgCO2e or 21.23 tCO2e.

Market Based

"

& Example:

If your company consumes 100,000 kWh of electricity but buys 100% renewable energy through a REC, the emissions factor is 0 kgCO2e/kWh. Your Scope 2 emissions would be:

 $100,000$ kWh x 0 kgCO₂e/kWh = 0 kgCO₂e.

55

Market Based

& Example: 100,000 kWh x 0.316 kgCO2e/kWh = 31,600 kgCO2e or 31.60 tCO2e.

Location-based vs market-based Carbon footprint of LLM

Renewable Energy Certificates (One-Time Purchase)

\$10.00 per MWh

In an ideal world, we would all have small wind farms in our backyards that generate exactly the amount of energy we need to power our homes. But let's face it, that's pretty tough to do. However, anyone can purchase renewable energy credits. Calculate your personal carbon footprint with our online calculator.

Purchase Personal RECs

Enter the annual US average (11 MWh) for your home's RECs or check your utility bill for specific usage.

The avg. US household consumes about 11 Megawatt hours (MWh) of electricity / year.

QUANTITY (MWH)

Product Price S10

RECIPIENT NAME *

Add to cart

All regions are not equal

Source: ElectricityMaps (April 27, 2024)

All regions are not equal

Data center water footprint

Data center water footprint

Offsite Water WUE

 WUE

$$
E_{off} = \frac{\sum_{k} b_{k} \times EWIF_{k}}{\sum_{k} b_{k}}
$$

$$
WUE_{on} = \frac{S}{S-1} \left(6 \times 10^{-5} \cdot T_{\rm w}^3 - 0.01 \cdot T_{\rm w}^2 + 0.61 \cdot T_{\rm w} - 10.40 \right)
$$

Offsite Water WUE

 WUE

$$
WUE_{on}=
$$

$$
\underbrace{S}_{S} = \frac{S}{1} \left(6 \times 10^{-5} \cdot T_{w}^{3} - 0.01 \cdot T_{w}^{2} + 0.61 \cdot T_{w} - 10.40 \right)
$$
\nNumber of Cycles

$$
E_{off} = \frac{\sum_{k} b_{k} \times EWIF_{k}}{\sum_{k} b_{k}}
$$

Offsite Water WUE

 WUE

$$
WUE_{on}=
$$

$$
E_{off} = \frac{\sum_{k} b_{k} \times EWIF_{k}}{\sum_{k} b_{k}}
$$

Offsite Water WUE

 WUE

$$
E_{off} = \frac{\sum_{k} b_{k} \times EWIF_{k}}{\sum_{k} b_{k}}
$$
 Estimated energy water intensity factor (EWIF) of each energy source

$$
WUE_{on}=
$$

Hourly carbon efficiency and WUE

Hourly carbon efficiency and total WUE for the first week of August 2022.

Estimated # of GPT-3 response for 500mL water

Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren, "Making AI Less 'Thirsty': Uncovering and Addressing the Secret Water Footprint of AI Models," 2023.

Estimated # of GPT-3 response for 500mL water

AI's water footprint is being uncovered…

AI's water footprint is being uncovered…

VIDEO

-
-
-
-
-
-
-

What's under the hood

Carbon Water Air Pollution

Google

Google

Demand T = 0 Servers

Dynamic server provisioning

Dynamic server provisioning

Demand T = 1 **Servers**

8888 9999

Dynamic server provisioning

Demand T = 2 **Servers**

Dynamic server provisioning

Demand T = 2 **Servers**

Responsbile AI computing Three main component

Sustainable AI 2008 - Trustworthy ML-augmented algorithms

Equitable AI system

[*L*YR, SIGMETRICS' 22] [Y*L*R, NeurIPS' 23] [*L*YR, NeurIPS' 23] [*L*YR, ICML' 23] [*L*YR, INFOCOM' 23] [Y*L*IR, SIGMETRICS' 24] [*L*YWR, SIGMETRICS' 25]

[*L*YIR, CACM' 23] [GH*L*IR, eEnergy' 24] [*L*LWR, HotCarbon' 24] [L*L*WR, HotEthics' 24]

[LY*L*LR, ICML' 24] [*L*YWR, eEnergy' 24]

Smooth Online Convex Optimization (SOCO)

Goal

25

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

$$
x_t, x_{t-1})
$$

25

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

$$
x_t, x_{t-1})
$$

25

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

25

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

Online Decision Making

 $y_1, x_1, y_2, x_2, y_3, x_3$...
25

Metrics

 $AVG(\pi) = \mathbb{E}\left[\text{cost}(\pi, s)\right]$

Average Cost

[1] The switching cost can also be written as $c(x_t, x_{t-p:t-1})$ to encode a multi-step structured memory cost.

$$
CR(\pi) = sup \frac{cost(\pi, s)}{se s^c} \frac{cost(\pi, s)}{s^c}
$$

Competitive Ratio

Online Decision Making

 $y_1, x_1, y_2, x_2, y_3, x_3$...

Problem formulation Smoothed Online Convex Optimization (SOCO)

A Greedy policy: Minimize hitting cost

 $x_t = \arg \min_{t \in \mathbb{N}} f(x_t, y_t)$ *xt* ∈

The hitting cost is minimized, but we may pay too much switching cost.

Worst-case vs average-case

28

Best of both worlds?

Expert algorithms (EXP)

Best of both worlds?

Expert algorithms (EXP)

Best of both worlds?

ML advice (ML)

Performance Performance

Best of both worlds?

ML advice (ML)

Performance Performance

Expert algorithms (EXP)

Best of both worlds?

Best of both worlds?

Mathematical formulation of the goal

 $cost(ALG) \leq (1 + \lambda) \cdot cost(EXP)$ $\forall y_{1:T} \in$

Consistency $cost(ALG) \leq C(\lambda) \cdot cost(ML)$ $\forall y_{1:T} \in$

Mathematical formulation of the goal

$cost(ALG) \leq (1 + \lambda) \cdot cost(EXP)$ $\forall y_{1:T} \in$

Tradeoff parameter *λ*

 $cost(ALG) \leq C(\lambda) \cdot cost(ML)$ $\forall y_{1} \in \mathcal{Y}$ **Consistency**

Mathematical formulation of the goal

Robustness

Tradeoff parameter *λ*

Consistency

30

Constraint. (Given $\lambda \ge 1$)

 $\sum_{\tau=1}^t f(x_\tau, y_\tau) + c(x_\tau, x_{\tau-1}) \leq \lambda \left(\sum_{\tau=1}^t f(x_\tau^\pi, y_\tau) + c(x_\tau^\pi, x_{\tau-1}^\pi) \right) + B$

30

Constraint. (Given $\lambda \ge 1$) $\sum_{\tau=1}^t f(x_\tau, y_\tau) + c(x_\tau, x_{\tau-1}) \leq \lambda \left(\sum_{\tau=1}^t f(x_\tau^\pi, y_\tau) + c(x_\tau^\pi, x_{\tau-1}^\pi) \right) + B$ Our algorithm cost Expert cost

30

Constraint. (Given $\lambda \ge 1$)

Why?

 $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_t) > \lambda \left(f(x_{t+1}^{\pi}) \right)$ **What if** $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \right)$

$$
L_{-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}^{\pi}, y_{\tau}) + c(x_{\tau}^{\pi}, x_{\tau-1}^{\pi}) \right) + B
$$

> $\lambda \left(f(x_{t+1}^{\pi}, y_{t+1}) + c(x_{t+1}^{\pi}, x_{t}^{\pi}) \right) \quad \forall x_{t+1} \in \mathcal{X}$

30

Constraint. (Given $\lambda \ge 1$)

Why?

 $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_t) > \lambda \left(f(x_{t+1}^{\pi})\right)$ **What if** $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \right)$

$$
L_{-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}^{\pi}, y_{\tau}) + c(x_{\tau}^{\pi}, x_{\tau-1}^{\pi}) \right) + B
$$

> $\lambda \left(f(x_{t+1}^{\pi}, y_{t+1}) + c(x_{t+1}^{\pi}, x_{t}^{\pi}) \right) \quad \forall x_{t+1} \in \mathcal{X}$

30

Constraint. (Given $\lambda \ge 1$)

Why?

 $f(x_{t+1}, y_{t+1}) + c(x_{t+1}, x_t) > \lambda \left(f(x_{t+1}^{\pi})\right)$ **What if** $\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}, y_{\tau}) + c(x_{\tau}, x_{\tau-1}) \right)$

$$
L_{t-1} = \lambda \left(\sum_{\tau=1}^{t} f(x_{\tau}^{\pi}, y_{\tau}) + c(x_{\tau}^{\pi}, x_{\tau-1}^{\pi}) \right) + B
$$

> $\lambda \left(f(x_{t+1}^{\pi}, y_{t+1}) + c(x_{t+1}^{\pi}, x_{t}^{\pi}) \right) \quad \forall x_{t+1} \in \mathcal{X}$

Your current action will have some unknown future impacts. Only considering the current cost is not enough

Take home message

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t =$

 s . *t*., cost $(x_{1:t-1})$ + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

 \mathcal{X}_t

$$
\arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2
$$

$$
f(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda)\text{cost}(x_{1:t}^{\pi})
$$

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t = \varepsilon$

 s . *t*., cost $(x_{1:t-1})$ + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

 \mathcal{X}_t

$$
\arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2
$$

(x, x_{t-1}) + G(x, x_t^{\pi}) \leq (1 + λ)cost(x_{1:t}^{\pi})

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t = a$

 s . *t*., cost $(x_{1:t-1})$ + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

$$
x_t^{\pi} = \|x - x_t^{\pi}\|
$$

$$
\arg \min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2
$$

(x, x_{t-1}) + G(x, x_t^{\pi}) \le (1 + \lambda)\text{cost}(x_{1:t}^{\pi})

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t =$

 s . *t*., cost $(x_{1:t-1})$ + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

$$
\underset{x \in \mathcal{X}}{\arg \min} \|x - \tilde{x}_t\|^2
$$

$$
\left(x, x_{t-1}\right) + G(x, x_t^{\pi}) \le (1 + \lambda)\text{cost}(x_{1:t}^{\pi})
$$

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t =$

 s . *t*., cost $(x_{1:t-1})$ + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

$$
x_{t} = \arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_{t}\|^{2}
$$

+ $c(x, x_{t-1}) + G(x, x_{t}^{\pi}) \leq (1 + \lambda)\text{cost}(x_{1:t}^{\pi})$

$$
\frac{G(x, x_{t}^{\pi}) = \|x - x_{t}^{\pi}\|}{\|x - x_{t}^{\pi}\|}
$$

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t =$

 s . *t*., cost($x_{1:t-1}$) + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

 $G(x,$

$$
x_t^{\pi} = ||x - x_t^{\pi}||
$$

$$
\arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2
$$

(x, x_{t-1}) + G(x, x_t^{\pi}) \leq (1 + λ)cost(x_{1:t}^{\pi})

Consider the L_p norm $d(\ \cdot\ ,\cdot\)$ as switching cost. For each step $t=1,2,\cdots$

 $x_t =$

 s . *t*., cost($x_{1:t-1}$) + $f(x, y_t)$ + $c(x, x_{t-1})$ + $G(x, x_t^{\pi})$

 $G(x,$

$$
x_t^{\pi} = ||x - x_t^{\pi}||
$$

$$
\arg\min_{x \in \mathcal{X}} \|x - \tilde{x}_t\|^2
$$

(x, x_{t-1}) + G(x, x_t^{\pi}) \leq (1 + λ)cost(x_{1:t}^{\pi})

33

$$
x_{t-1} \quad \longrightarrow \quad
$$

 $x_t \leftarrow \text{proj}(\tilde{x}_t, x_t^{\pi}, \text{cost}(x_{1:t-1}), \text{cost}(x_{1:t}^{\pi}))$ based on Eqn. (2) //Robustification

Expert Robustified Learning: ERL

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t $2:$
- Expert chooses x_t^{π} $3:$
- $\tilde{x}_t \leftarrow h(x_{t-1}, y_t)$ //Action output from ML 4:
- $5:$

33

t from ML $(\lambda_t))$ based on Eqn. (2) //Robustification

Expert Robustified Learning: ERL

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t $2:$
- Expert chooses x_t^{π} $3:$

4:
$$
\tilde{x}_t \leftarrow h(x_{t-1}, y_t)
$$
 //Action output

5:
$$
x_t \leftarrow \text{proj}(\tilde{x}_t, x_t^{\pi}, \text{cost}(x_{1:t-1}), \text{cost}(x_{1:t}^{\pi})
$$

33

t from ML (t_t)) based on Eqn. (2) //Robustification

Expert Robustified Learning: ERL

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t $2:$
- Expert chooses x_t^{π} $3:$

5

4:
$$
\tilde{x}_t \leftarrow h(x_{t-1}, y_t)
$$
 //Action output

$$
\colon \quad x_t \leftarrow \textup{proj}(\tilde{x}_t, x_t^{\pi}, \textup{cost}(x_{1:t-1}), \textup{cost}(x_{1:t}^{\pi})
$$

33

t from ML based on Eqn. (2) //Robustification

Expert Robustified Learning: ERL

Algorithm 1 Expert-Robustified Learning for Online Optimization with Memory Cost (ERL)

1: for $t = 1, \dots, T$

- Receive the context y_t $2:$
- Expert chooses x_t^{π} $3:$

4:
$$
\tilde{x}_t \leftarrow h(x_{t-1}, y_t)
$$
 //Action output

5:
$$
x_t \leftarrow \text{proj}(\tilde{x}_t, x_t^{\pi}, \text{cost}(x_{1:t-1}), \text{cost}(x_{1:t}^{\pi})
$$
Theoretical Analysis

ML-Expert Discrepancy

 $\rho(y) = \max_{t=1,\cdots,T}$

Bi-Competitive Ratio

$$
CR \le \min\left\{ (1+\lambda)CR^{\pi}, \left(\sqrt{\tilde{CR}} + \sqrt{CR^{\pi}} \left[1 + \sqrt{\frac{\beta_h + (1+L_1)^2}{2}\rho} - \sqrt{1+\lambda} \right]^4 \right) \right\},
$$

Robustness
Consistency

$$
\frac{\|\tilde{x}_t - x_t^{\pi}\|^2}{f(x_t^{\pi}, y_t) + d(x_t^{\pi}, x_{t-1}^{\pi})}.
$$

-
-
-
-
-
-
- - -

35

35

Hitting Cost: $f(x_t, y_t)$

Hitting Cost: $f(x_t, y_t)$

Switching Cost: $c(x_t, x_{t-1})$

Listen to the local voice Localized environmental burdens

Listen to the local voice Localized environmental burdens

A new front in the wa internet use internet use
In the American West, data centers are clashing with local

An energy crunch forces continued coal burning in a low-income area as data centers strain the regional power supply.

 6 10 min

By Shannon Osaka

POWER GRAB

A utility promised to stop burning coal. Then Google and Meta came to town.

口 375

he New York Times

rgy, Amazon, Google
urn to Nuclear Power

s are investing billions of dollars in ons-free source of electricity for er businesses.

Long-term Regularized Online Optimization

Problem formulation

Goal Hitting cost min *xt* ∈ *T* ∑ *t*=1 $f(x_t, y_t) + c(x_t, x_{t-1}) + h(x_t)$

Metrics

 $AVG(\pi) = \mathbb{E}\left[\text{cost}(\pi, s)\right]$

A PARTICIPATE AND A PARTICIPATE AND A PARTICIPATE AND A PARTICIPATE OF A PARTICIPATE AND A PARTICIPATE AND A PARTICIPATE AND A PARTICIPATE AND A PARTICIPATE OF A PARTICIPATE OF A PARTICIPATE AND A PARTICIPATE OF A PARTICI

$$
CR(\pi) = \sup_{s \in \mathcal{S}} \frac{\text{cost}(\pi, s)}{\text{cost}(\pi^*, s)}
$$

Average Cost Competitive Ratio

T ∑ *t*=1 $p(x_t, a_t)$

Switching cost

Problem formulation

Metrics

 $AVG(\pi) = \mathbb{E}\left[\text{cost}(\pi, s)\right]$

<u>, a famou de la companya de la famou de la companya de la companya de la companya de la companya de la company
La famou de la companya de la compa</u>

$p(x_t, a_t)$

$$
CR(\pi) = sup \frac{cost(\pi, s)}{se^s \cos t(\pi^*, s)}
$$

Average Cost Competitive Ratio

Goal Hitting cost Long-term cost min *xt* ∈ *T* ∑ *t*=1 $f(x_t, y_t) + c(x_t, x_{t-1}) + h(x_t)$ *T* ∑ *t*=1 Switching cost

$(y_1, c_1), x_1, (y_2, c_2), x_2, ...$ Online Decision Making

A premier algorithm (R - OBD)

Online Decision Making

 $y_1, x_1, y_2, x_2, ...$

At each time t, receive context *yt* • $v_t \leftarrow \arg \min_{x} f(x, y_t)$ •
• *x* $x_t \leftarrow \arg \min f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t)$ *x*

A premier algorithm (R - OBD)

$$
+ h(\sum_{t=1}^{T} p(x_t, a_t))
$$

$(y_1, a_1), x_1, (y_2, a_2), x_2, \ldots$ Online Decision Making Online Decision Making

At each time t, receive context *yt* • $v_t \leftarrow \arg \min_{x} f(x, y_t)$ •
• *x* $x_t \leftarrow \arg \min f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t)$ *x*

A premier algorithm (R - OBD)

$$
+ h(\sum_{t=1}^{T} p(x_t, a_t))
$$

$(y_1, a_1), x_1, (y_2, a_2), x_2, \ldots$ Online Decision Making Online Decision Making

At each time t, receive context *yt* • $v_t \leftarrow \arg \min_{x} f(x, y_t)$ •
• *x* $x_t \leftarrow \arg \min f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t)$ *x*

Objective function

Problem reformulation

Objective function

Problem reformulation

Objective function

Hitting cost Decoupled cost *T* ∑ *t*=1 $h(z_t)$ *T* ∑ *zt* \bullet z_t is the location-wise "budget"

Problem reformulation

42

min *xt* ∈ 1 *T T* $\sum_{t=1}^{\infty}$

 $f(x_t, y_t) + c(x_t, x_{t-1}) + h(z_t) + \mu \cdot (p(x_t, a_t) - z_t)$

Equity-aware online optimization

42

min *xt* ∈ 1 *T T* $\sum_{t=1}^{\infty}$ $f(x_t, y_t) + c(x_t, x_{t-1}) + h(z_t)$

Equity-aware online optimization

$$
(x_{t-1}) + h(z_t) + \mu \cdot (p(x_t, a_t) - z_t)
$$

Dual variable

42

Equity-aware online optimization min ∈ 1 *T* ∑ $f(x_t$, *yt*) + $c(x_t$ $h(x_t, a_t) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right)$ Dual variable

$$
\min_{x_t \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]
$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg \min_{x \in \mathcal{X}}$ • $z_t = \min_{z \in \mathcal{F}}$ •
• *x*∈ $f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t) + \mu_t \cdot p(x, a_t)$ *z*∈ $h(z) - \mu_t z_t$ $\mu = \arg \min$ *μ* $\langle z_t - p(x, a_t) \rangle +$ 1 *η* $V_h(\mu, \mu_t)$

42

$$
\min_{x_t \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]
$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg \min_{x \in \mathcal{X}}$ • $z_t = \min_{z \in \mathcal{F}}$ •
• *x*∈ $f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t) + \mu_t \cdot p(x, a_t)$ *z*∈ $h(z) - \mu_t z_t$ $\mu = \arg \min$ *μ* $\langle z_t - p(x, a_t) \rangle +$ 1 *η* $V_h(\mu, \mu_t)$

Equity-aware online optimization min ∈ 1 *T* ∑ $f(x_t$, *yt*) + $c(x_t$ $h(x_t, a_t) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right)$ Dual variable

42

$$
\min_{x_t \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]
$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg \min_{x \in \mathcal{X}}$ $z_t = \min_{z \in \mathcal{F}}$ •
• *x*∈ $f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t) + \mu_t \cdot p(x, a_t)$ *z*∈ $h(z) - \mu_t z_t$ $\mu = \arg \min$ *μ* $\langle z_t - p(x, a_t) \rangle +$ 1 *η* $V_h(\mu, \mu_t)$

Equity-aware online optimization min ∈ 1 *T* ∑ $f(x_t$, *yt*) + $c(x_t$ $h(x_t, a_t) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right)$ Dual variable

42

$$
\min_{x_t \in \mathcal{X}} \frac{1}{T} \sum_{t=1}^T \left[f(x_t, y_t) + c(x_t, y_t) \right]
$$

At each time t, receive context (y_t, a_t) • $x_t \leftarrow \arg \min_{x \in \mathcal{X}}$ $z_t = \min_{z \in \mathcal{F}}$ •
• *x*∈ $f(x, y_t) + \lambda_1 c(x, x_{t-1}) + \lambda_2 c(x, y_t) + \mu_t \cdot p(x, a_t)$ *z*∈ $h(z) - \mu_t z_t$ $\mu = \arg \min$ *μ* $\langle z_t - p(x, a_t) \rangle +$ 1 *η* $V_h(\mu, \mu_t)$

Equity-aware online optimization min ∈ 1 *T* ∑ $f(x_t$, *yt*) + $c(x_t$ $h(x_t, a_t) + h(z_t) + \mu \cdot \left(p(x_t, a_t) - z_t \right)$ Dual variable

Theorem (informal)

When $T \to \infty$, for any finite R, the cost of eGLB satisfies $cost(eGLB) \leq C \cdot cost(OPT^*) + O$ 1 *^T*) ⁺ *L* ⋅ *δ T*

Performance analysis

When $T \to \infty$, for any finite R, the cost of eGLB satisfies **Theorem (informal)**

 $cost(eGLB) \leq C \cdot cost(OPT^*) + O$

Performance analysis

1 *^T*) ⁺ *L* ⋅ *δ T*

When $T \to \infty$, for any finite R, the cost of eGLB satisfies **Theorem (informal)**

 $cost(eGLB) \leq C \cdot cost(OPT^*) + O$

Performance analysis

1 *^T*) ⁺ *L* ⋅ *δ T*

Theorem (informal)

Performance analysis

- 10 different data center locations (4) in the US, 4 in Europe, and 2 in Asia)
- BLOOM inference trace (scaled up)
- Environmental costs: Water and carbon footprints

A case study

A case study

A case study

A case study

A case study

eGLB mitigates AI's environmental inequity (at a small cost)

A case study

Thanks

Q & A