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AI's growing appetite for energy

IEA projects that, by 2026, the global AI computing 
will consume at least 10x the electricity in 2023. [1]

[1] McKinsey & Company (2024) How data centers and the energy sector can sate AI’s hunger for power
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Energy tolls of large language models
Training

1,066 MWh
OPT 280B

[1] The energy consumption for GPT-4 is estimated to be at least 7200 MWh in “Preventing the Immense Increase in the Life-Cycle Energy and Carbon 
Footprints of LLM-Powered Intelligent Chatbots”

21,588 MWh
Llama 3.1 405B

1,287 MWh
GPT-3 175B [1]   

4900 MWh
Llama 3.1 70B

24,672 Homes 10,958 Cars 
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Inference

[1] Online Calculator https://huggingface.co/spaces/genai-impact/ecologits-calculator

Write an email 
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Carbon footprint of LLM
Training

≈ 160,000 iPhones

56,000 Surface Laptop

Llama 3.1 405B
8930 tons CO2eq

89,000 iPads

308,000 Apple Watches
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Carbon footprint of LLM
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All regions are not equal

Source: ElectricityMaps (April 27, 2024)
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Water footprint estimation

Offsite Water WUE

Estimated energy water 
intensity factor (EWIF) of 
each energy source

Onsite Water WUE (based on an example cooling tower)

Outside Wetbulb TemperatureNumber of Cycles



Hourly carbon efficiency and WUE

Hourly carbon efficiency and total WUE for the first week of August 2022. 



Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren, "Making AI Less 'Thirsty': Uncovering and Addressing the Secret Water Footprint of AI Models," 2023.

Estimated # of GPT-3 response for 500mL water



Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren, "Making AI Less 'Thirsty': Uncovering and Addressing the Secret Water Footprint of AI Models," 2023.

Estimated # of GPT-3 response for 500mL water
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What’s under the hood

Water  Carbon Air Pollution
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Dynamic server provisioning for LLM

Geographical Load Balancer

Pool  Scheduler Pool  Scheduler Pool  Scheduler

Inference Request

…
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Responsbile AI computing
Three main component

Sustainable AI Trustworthy ML-augmented 
algorithms

Equitable AI system

[LYR, SIGMETRICS’ 22]

[YLR, NeurIPS’ 23]

[LYR, NeurIPS’ 23]

[LYR, ICML’ 23]

[LYR, INFOCOM’ 23]

[YLIR, SIGMETRICS’ 24]

[LYWR, SIGMETRICS’ 25]

[LYIR, CACM’ 23]

[GHLIR, eEnergy’ 24]

[LLWR, HotCarbon’ 24]

[LLWR, HotEthics’ 24]


[LYLLR, ICML’ 24]

[LYWR, eEnergy’ 24]
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Goal Switching cost[1]Hitting cost

25

Problem formulation

Metrics

AVG(π) = 𝔼 [cost(π, s)]

Average Cost

CR(π) = sup
s∈𝒮

cost(π, s)
cost(π*, s)

Competitive Ratio
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A quick example in responsible AI computing

Policy π
xt

x1:t−1

y1:t

A Greedy policy: Minimize hitting cost

The hitting cost is minimized, but we may 
pay too much switching cost.

xt = arg min
xt∈𝕏

f(xt, yt)
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Learn to optimize (L2O)

Good average

performance

Vulnerable to worst 

case context

ML model

Worst-case vs average-case

xt

x1:t−1

y1:t

Expert algorithm

Strong worst-case 

guarantee

Sub-optimal average

performance

Environment
Cost
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Expert algorithms (EXP)

28

Best of both worlds?

Our Algorithm (ALG)

Our Goal:   
1. Better average performance 

but still robust (finite CR) 
2. Flexible tradeoff between 

robustness and performance 
3. Calibration-aware ML training

ML advice (ML)



Mathematical formulation of the goal

              cost(ALG) ≤ (1 + λ) ⋅ cost(EXP) ∀y1:T ∈ 𝒴

                     cost(ALG) ≤ C(λ) ⋅ cost(ML) ∀y1:T ∈ 𝒴

Robustness

Consistency
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Mathematical formulation of the goal

              cost(ALG) ≤ (1 + λ) ⋅ cost(EXP) ∀y1:T ∈ 𝒴

                     cost(ALG) ≤ C(λ) ⋅ cost(ML) ∀y1:T ∈ 𝒴

Robustness

Consistency

Tradeoff parameter λ
Our Algorithm (ALG)
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A quick idea about robustness

∑t
τ=1 f(xτ, yτ) + c(xτ, xτ−1) ≤ λ (∑t

τ=1 f(xπ
τ , yτ) + c(xπ

τ , xπ
τ−1)) + B

λ ≥ 1

Why?

f(xt+1, yt+1) + c(xt+1, xt) > λ (f(xπ
t+1, yt+1) + c(xπ

t+1, xπ
t )) ∀xt+1 ∈ 𝒳

What if ∑t
τ=1 f(xτ, yτ) + c(xτ, xτ−1) = λ (∑t

τ=1 f(xπ
τ , yτ) + c(xπ

τ , xπ
τ−1)) + B

Expert costOur algorithm cost

Your current action will have some unknown future impacts. Only considering the 
current cost is not enough 

Take home message
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Robustified learning for SOCO

31

Consider the  norm  as switching cost. For each step Lp d( ⋅ , ⋅ ) t = 1,2,⋯

G(x, xπ
t ) = ∥x − xπ

t ∥

s . t . , cost(x1:t−1) + f(x, yt) + c(x, xt−1) + G(x, xπ
t ) ≤ (1 + λ)cost(xπ

1:t)

xt = arg min
x∈𝒳

∥x − x̃t∥2

xt

xπ
t

xπ
t+1

Reservation Expert

Our algorithm
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xt−1

yt
f(xt, yt) + d(xt, xt−1)

Cost

x̃t

ML

xt

Robustification

Expert Robustified Learning: ERL



Theoretical Analysis

34

ML-Expert Discrepancy

Bi-Competitive Ratio

Robustness Consistency
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A toy example for equitable AI

363 0+ 22 +
Equitable

 = 1
Health Cost

Request
 = 2

Health Cost
Request

 = 1
Health Cost

Request
 = 2

Health Cost
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Long-term Regularized Online 
Optimization
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Equity-aware online optimization

min
xt∈𝕏

1
T

T

∑
t=1

[f(xt, yt) + c(xt, xt−1) + h(zt) + μ ⋅ (p(xt, at) − zt)]
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T

∑
t=1

[f(xt, yt) + c(xt, xt−1) + h(zt) + μ ⋅ (p(xt, at) − zt)]

At each time t, receive context 


• 


• 


•

(yt, at)

xt ← arg min
x∈𝒳

f(x, yt) + λ1c(x, xt−1) + λ2c(x, vt) + μt ⋅ p(x, at)
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z∈𝒵
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μ

⟨zt − p(x, at)⟩ +
1
η

Vh(μ, μt)

Dual variable
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When , for any finite , the cost of eGLB satisfies  𝑇 → ∞ 𝑅
Theorem (informal)
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Performance analysis

cost(eGLB) ≤ C ⋅ cost(OPT*) + O( 1
T ) +

L ⋅ δ
T

cost(eGLB) ≤ C ⋅ cost(OPT*) + O(
1
T

) +
L ⋅ δ

T
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“Total variation”∼  
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• 10 different data center locations (4 
in the US, 4 in Europe, and 2 in 
Asia)


• BLOOM inference trace (scaled up)

• Environmental costs: Water and 

carbon footprints

A case study
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eGLB mitigates AI’s environmental inequity (at a small cost) 

A case study



Thanks
Q & A


