DesignSafe: Providing Data and Computational Resources to Advance Research in Natural Hazards Engineering

Ellen M. Rathje, PhD, PE, F.ASCE Janet S. Cockrell Chair in Engineering Dept. of Civil, Arch., and Env. Engineering University of Texas at Austin

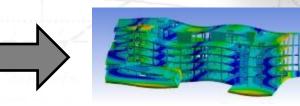
RICE

Natural Hazards Research

Functional Recovery

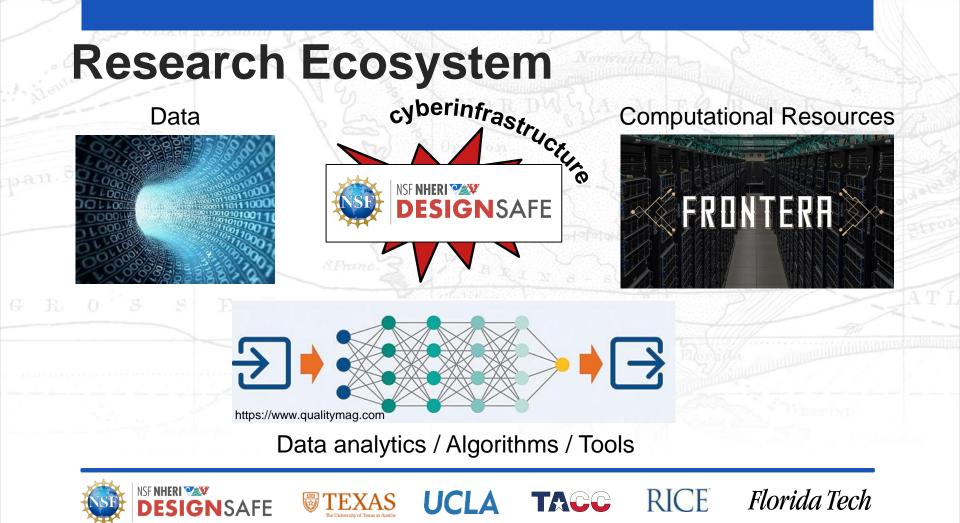
Hazard Forecasts

- Earthquake shaking
- Hurricane/tornado wind speeds
- Storm surge/tsunami

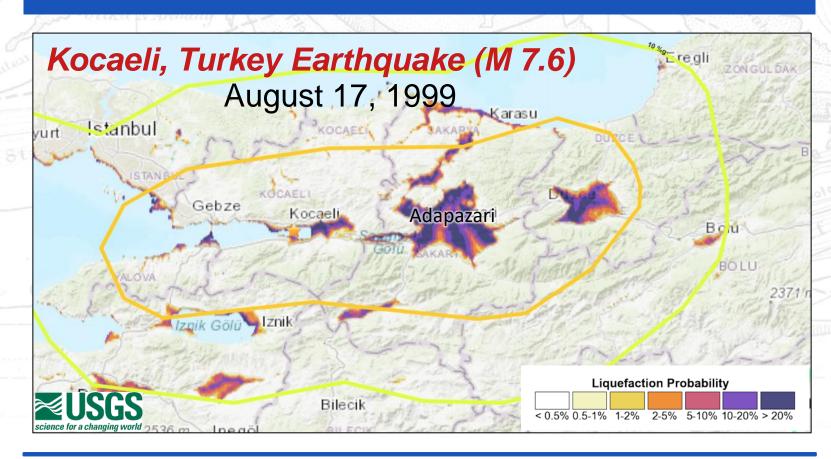

Infrastructure/Societal Damage

RICE

Infrastructure/Societal Response

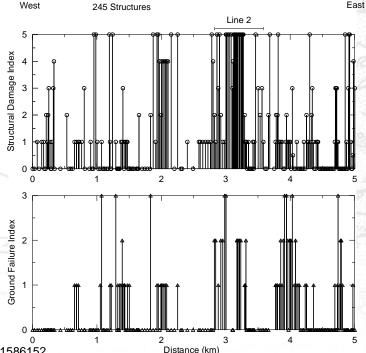


TACC



Florida Tech

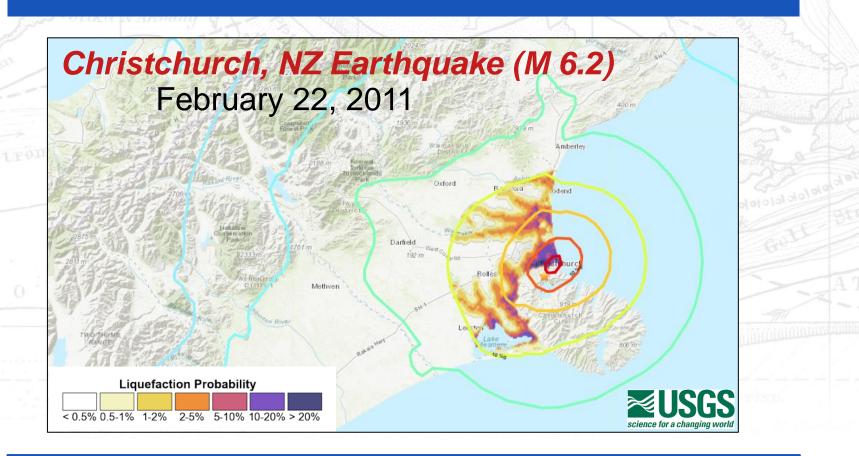
RICE



RICE

Data Collection and Subsequent Research

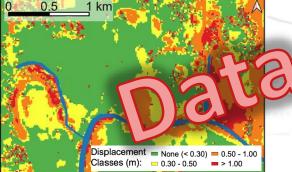
Bray and Stewart (2000): https://doi.org/10.1193/1.1586152

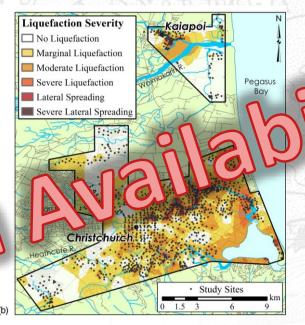

- Liquefaction of finegrained soils
- Response of structures on liquefiable ground
- Between 2000-2010, Google Scholar lists
 525 papers for "liquefaction" and "Adapazari"

Florida Tech

RICE

TACC




RICE

Data Collection and Subsequent Research

Durante and Rathje (2021) https://doi.org/10.1177/87552930211004613

Maurer et al. (2014) https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117

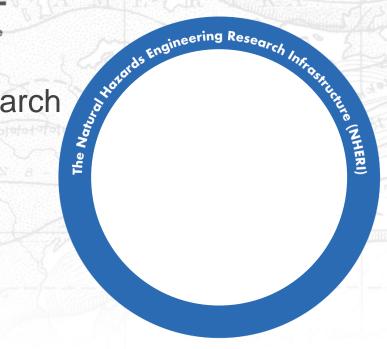
UCL

Data available through NZ Geotechnical I scale liquefaction, lateral spreading effects Between 2011-2021, • **Google Scholar lists** 6,260 papers for "liquefaction" and "Christchurch"

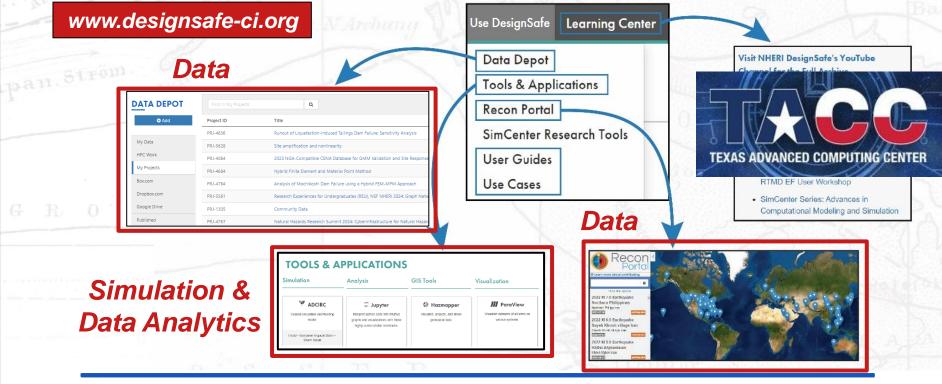
Florida Tech

RICE

All Files > NZ_CHCH_proj



- Shared use infrastructure for research
 - Network Coordination Office
 - Experimental facilities
 - RAPID reconnaissance facility
 - DesignSafe cyberinfrastructure (CI)
 - SimCenter


Florida Tech

RICE

TACC

DesignSafe Components

Florida Tech

RICE

DesignSafe and TACC

- DesignSafe leverages TACC staff and compute resources
- Tapis is the underlying API for DesignSafe and is developed by TACC (<u>https://tapis-project.org/</u>)
 - Formerly Agave API
- Tapipy Python package for interacting with Tapis (<u>https://pypi.org/project/tapipy/</u>)
 - DesignSafe upgraded to Tapis v3 in August 2024
 - Security enhancements, allocations for individual accounts

ACC

DesignSafe Accounts

- DesignSafe Account = TACC Account
- Multi-factor authentication (MFA) required to login
 - Authenticator apps (e.g., Duo, Google Auth, 1Password)
- Initial high-performance computing (HPC) allocations
 - 10,000 SU/yr
 - Larger allocations available by request

TEXAS ADVANCED COMPUTING CENTER
A Token
n (MFA) is now required. TACC User Portal.

DesignSafe: Data Depot

	DATA DEPOT	Find in My P	rojects Q	Rename Move	관 법 Preview Copy
	🛨 Add	Project ID	Title	Principal Investigator	Last Modified
		PRJ-5628	Site amplification and nonlinearity	Albert Kottke	9/3/2024, 10:52:29 AM
	My Data	PRJ-4836	Runout of Liquefaction-Induced Tailings Dam Failure: Sensitivity Analysis	Ellen Rathje	9/3/2024, 9:55:49 AM
	HPC Work	PRJ-4084	2023 NGA-Compatible CENA Database for GMM Validation and Site Response Studies	Jonathan Stewart	8/26/2024, 1:45:39 PM
	My Projects	PRJ-4684	Hybrid Finite Element and Material Point Method	Ellen Rathje	8/21/2024, 9:10:16 AM
Private	Box.com	PRJ-4784	Analysis of Mochikoshi Dam Failure using a Hybrid FEM-MPM Approach	Brent Sordo	8/16/2024, 9:05:53 AM
	Dropbox.cor Google Drive	PRJ-5581	Research Experiences for Undergraduates (REU), NSF NHERI 2024: Graph Network- Based Simulators and Point-E for 3D Natural Hazard Simulations	Ellen Rathje	8/13/2024, 11:29:43 AM
		PRJ-1305	Community Data	Charlie Dey	8/7/2024, 2:00:15 PM
Public	Published Published (NEES)	PRJ-4767	Natural Hazards Research Summit 2024: Cyberinfrastructure for Natural Hazards Research	Ellen Rathje	6/27/2024, 2:16:31 PM
	Community Data	PRJ-3951	Regional Earthquake-Induced Landslide Assessments for Use in Seismic Risk Analyses of Distributed Infrastructure Systems	Ellen Rathje	6/12/2024, 10:32:26 AM

RICE

DesignSafe Data Models

Florida Tech

Structured, yet *flexible*, data models for different types of research

Experimental Project

For physical work, typically done at an experimental facility or in the field.

Simulation Project For numerical and/or analytical work, done with software.

Hybrid Simulation Project For work using both physical and numerical components.

Field Research Project For work done by observation in areas affected by a natural hazard.

Other Project For work other than the project types above.

RICF

Curation Process

PRJ-3372 | HazMapper UW Data

RAPID, NHERI
Field Research View Overview
Other
Streetview, UAS, Drones, Hazmapper
HazMapper Testing UW Data 🖿 🗹

This project is used to house data collected near the University of Washington to test Hazmapper 2.0

-		
	Mission StEER Field Assessment Structural Team (FAST)	\checkmark
	Research Planning Collection Planning Documentation	\square
	Engineering/Geosciences Collection StEER: Other Ground-Based Imagery	
	Engineering/Geosciences Collection StEER: Unmanned Aerial Survey	
	Engineering/Geosciences Collection StEER: Applied StreetView Technology	
	Engineering/Geosciences Collection StEER: Detailed Damage Assessments	
	D1.2 Non-Building Damage Assessments - StEER	
1	D1.1 Building Damage Assessments - StEER	

RICE

Florida Tech

 Working Directory
 Curation Directory
 Publication Preview
 1
 Add Missions Add Documents
 2
 Add Collections
 3
 Relate Data

 PRJ-3372
 PRJ-3372

 ➡ HazMapper UW Data Select a Collection ✓ Save 	-	1/13/22 6:16 PM
Belect a Collection Save	135.2 kB	1/19/22 2:25 PM
HazMapperTesting-UW.hazmapper Select a Collection Save	70.0 bytes	1/23/22 11:31 PM

UCLA

DESIGNSAFE DATA DEPOT

Data Depot > Overview

USER GUIDE

designsafe-ci.org

Search docs

DesignSafe Essentials

- Getting Started
- Account Help

Data Depot

Overview

- Managing Data
- Data Depot Repository

▶ About Office Hours

Curating & Publication

DesignSafe Data Depot/Curation

DesignSafe's Data Curator, Dr. Maria Esteva, holds virtual office hours every **Tuesday and Thursday from 1:00pm to 2:00pm CT** (via Zoom) to assist you with your data curation and publication. *Reservations are not required, simply connect to the Zoom feed during this time.*

RICE

Florida Tech

Connect to Office Hours

Meeting ID: 730 745 593 Passcode: 595633

26 January 2023: DesignSafe Data Depot certified as a Trustworthy Data Repository by the CoreTrustSeal Standards and Certification Board (thru 26 Jan 2026)

- Organizational infrastructure
- Digital object management
- Technology
- Fewer than 4% of data repositories worldwide have been certified by CTS
 - 115 certified repositories, 3094 registered repositories at re3data.org

Florida Tech

CORE

TRUST

SFA

Data Depot: Search

NHERI Facilities Help Search DesignSafe Use DesignSafe Learning Center NHERI Community News Q **Q** Search flood Natural Hazard Type All Types Year Published **DATA DEPOT** Title Principal Description Keywords Publication... Published Investigator Published (NEES) Understanding Hybrid Green-Gray Coastal Infrastructure View Description Engineering With 9/4/2024 Tori Tomiczek Processes and Performance Uncertainties for Flood Hazard Nature, Community Data Mitigation Mangroves, Physical Modeling Experimental Help-A Nationwide Analysis of Community-Level Floodplain Katharine natural hazard. 8/28/2024 View Description Development Outcomes and Key Influences Mach floodplain development, Paper East African Cyclone Flooding - Mozambique Esther View Description Cyclone, Flood, 7/31/2024 Field research Obonyo **RAPID** Facility ARkStorm 2.0: Atmospheric Simulations Depicting Extreme View Description ARkStorm, Xingying 6/24/2022 Storm Scenarios Capable of Producing a California Huang simulation. Megaflood California flood Dataset

Published Datasets

Published

PRJ-3499 | ARkStorm 2.0: Atmospheric Simulations Depicting Extreme Storm Scenarios Capable of Producing a California Megaflood

Published (NEES)

DATA DEPOT

▲ Download Dataset

Community Data

Help

Cite This Data:

File Name
Analysis Data

Codes

Data Used in Analysis

Huang, X., D. Swain (2022). "ARkStorm 2.0: Atmospheric Simulations Depicting Extreme Storm Scenarios Capable of Producing a California Megaflood", in ARkStorm 2.0: Atmospheric Simulations Depicting Extreme Storm Scenarios Capable of Producing a California Megaflood. DesignSafe-Cl. https://doi.org/10.17603/ds2-mzgn-cy51

Dataset Metrics [Updated 09/2024]

Download Citation: DataCite XML | RIS | BibTeX 275 Downloads 1003 Views 1 Citations Details

Authors	Huang, Xingying; Swain, Daniel
Data Type(s)	Dataset
Natural Hazard Type(s)	Atmospheric River, Flood
Date of Publication	2022-06-24

Description: ARkStorm 2.0 is a cross-disciplinary flood emergency management and clima scenarios in California in a warming climate. It builds upon previous disaster contingency a 2010. In ARkStorm 2.0, we update and upgrade the methods used in ARkStorm 1.0 in two based approach to scenario event selection. To do so, we conduct new simulations by emission More

Q

Aggregated Usage		Quarter 2024 V	Unique Investigations	Unique Requests	Total
Unique Investigations	1043		Investigations	Requests	Requests
(views) 🕐		Jan-Mar	32	32	733
Unique Requests	277	Apr-Jun	5	5	15
(downloads) ③		Jul-Sep	66	8	33
Total Requests 💿	2292	Oct-Dec			
		UCI-DEC			

These metrics are presented according to the Make Data Count standard.

Metrics recorded since January 2022.

Х

Make Data Count Metrics

Unique Investigation: 1-hour session during which a user viewed metadata or accessed files

Unique Request: 1-hour session during which a user viewed accessed files

Total Requests: Total downloads, previews, and copies of files plus Project Downloads

taset Metrics [Update	d 09/2024	1]			
Aggregated Usage		Quarter 2024 V	Unique	Unique	Total
Unique Investigations	1043		Investigations	Requests	Requests
(views) ⑦		Jan-Mar	32	32	733
Unique Requests	277	Apr-Jun	5	5	15
(downloads) ⑦		Jul-Sep	66	8	33
Total Requests 💿	2292				
		Oct-Dec			

These metrics are presented according to the Make Data Count standard.

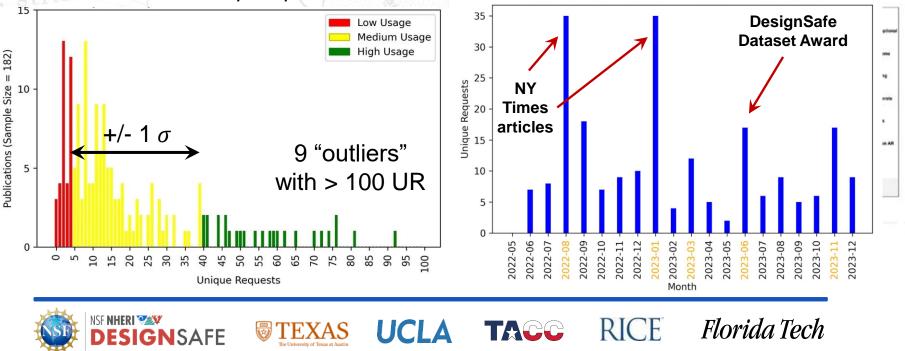
Metrics recorded since January 2022.

RICE

Florida Tech

Since 2022: Over 45,000 Unique Requests (UR) across all DesignSafe datasets (~1500/month)

TACC


Benchmarking Unique Requests

Unique Requests (UR) / Dataset

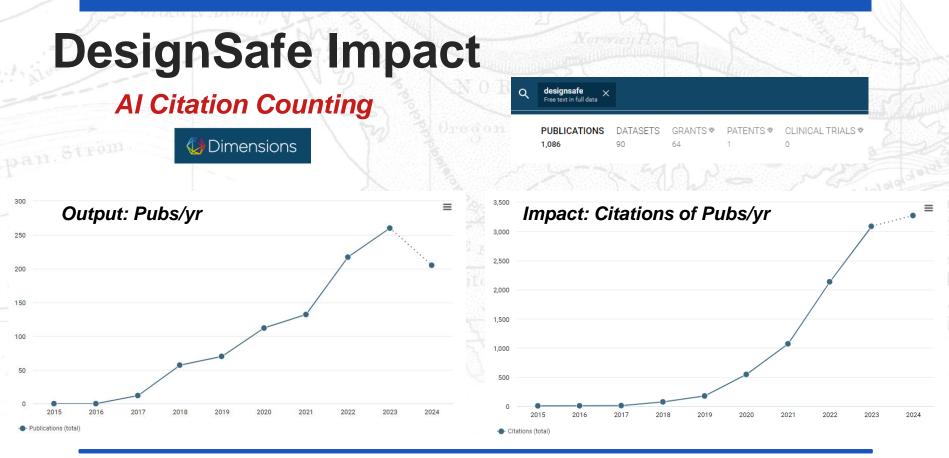
over 12 months post-publication

Dataset PRJ-3499

ARkStorm 2.0: Atmospheric Simulations Depicting Extreme Storm Scenarios Capable of Producing a California Megaflood

Data Publication and Citation

Manual Citation Counting


Year	DesignSafe Citation	Primary Data Use	Subsequent Data Reuse	Totals
Q1-3 2024	35	92	147	274
2023	64	142	140	346
2022	65	107	105	277
2021	42	89	60	191
2020	52	74	61	187
2019	21	25	30	76
2018	26	31	13	70

TEXAS UCLA

TACC

RICE

How to increase data publishing?

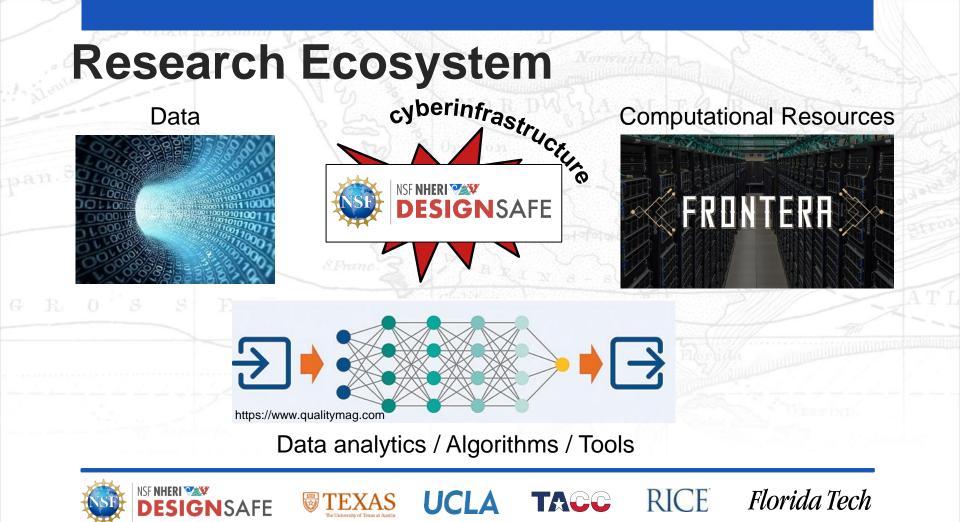
Borycz et al. (2023) "Perceived benefits of open data are improving but scientists still lack resources, skills, and rewards" https://doi.org/10.1057/s41599-023-01831-7

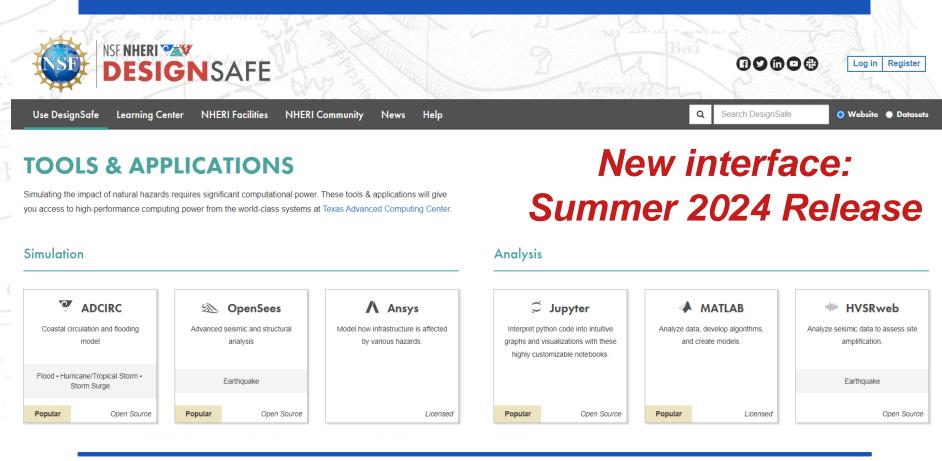
Sticks

- Force researchers to do it!
- Funding agencies can require it
- Journals can require supporting data be published with papers

Carrots

- Make it easy
- Provide tools and resources
- Provide incentives
- Give researchers credit for publishing


Florida Tech


Saygili, G., Rathje, E., and Wang, Y. (2018a). "Probabilistic seismic hazard analysis for the sliding displacement of rigid sliding masses [Data set]." Designsafe-CI (https://doi.org/10.17603/ds22d6k) (Feb. 7,

RICF

TACC

RICE

DesignSafe Vision

- Lower the barriers of entry for using simulation tools, highperformance computing (HPC), AI and Machine Learning (ML)
- Tiered approach
 - Portal apps that utilize HPC on the backend (mostly simulation and visualization codes)
 - JupyterLab with access to TACC VM, CPU, or GPU resources, job submission via Tapis API, relevant AI/ML support (e.g., CUDA, PyTorch, TensorFlow)
 - Command line access to TACC resources (Frontera, Lonestar, Stampede)

TACC

Florida Tech

RICF

Co-location of tools and data through DesignSafe

OPENSEES OVERVIEW

The Open System for Earthquake Engineering Simulation (OpenSees) is a software framework for simulating the static and seismic response of structural and geotechnical systems. It has advanced capabilities for modeling and analyzing the nonlinear response of systems using a wide range of material models, elements, and solution algorithms.

Learn How to Use OpenSees

Read step-by-step instructions on getting started and a detailed breakdown of version differences in the User Guide.

User Guide

Video Tutorials

Running OpenSees on the DesignSafe CyberInfrastructure - Scalability by Design, Nov. 14, 2023 Calibrating an OpenSees Material Model using Experimental Data in quoFEM, Dec. 10, 2021 Fluid-Structure Interaction with OpenFOAM and OpenSees with Hydro-UQ, Nov.19 2021 2021 DSA Hackathon: Automated Model Calibration for Cyclic Tests Using OpenSees & Jupyter Notebooks WEBINAR - Using OpenSeesPy on DesignSafe, May 22, 2019 WEBINAR - OpenSees & DesignSafe, Oct. 31, 2018 SimCenter | Numerical Simulation of Concentrically Braced Frames using OpenSees, Oct. 10, 2017

Select a Version

Interactive VM for OpenSees

Runs OpenSees interactively and responds to errors in real time.

OpenSees-EXPRESS (VM)

Get Started

Runs on a single core with basic computer-resources requirements and is easy to use.

OpenSeesMP

Get Started

Runs all the processors in parallel. Requires understanding of parallel processing and the capabilities to write parallel scripts.

OpenSeesSP

Get Started

Florida Tech

Parallel version driven by a single processor. Easy to use even with limited knowledge about parallel computing.

RICE

Home > Use DesignSafe > Tools & Applications > Simulation > OpenSees Overview > OpenSeesMP

🗘 Job Status		*	🔊 OpenSeesMP					View User Guide
Applicatio	ons:		Configuration	Back Continue		Summary		Submit Job
Simulation [18]	^		Queue					
ADCIRC [3]	~		sloc	· · · · · · · · · · · · · · · · · · ·	~	Inputs		
Ansys			icx			Input Directory	tapis://designsafe.storage.de 311K	efault/erathje/CE
EE-UQ [1]	~		pvc skx				3116	Edit
Hydro-UQ [1]	~		skx-dev			Parameters		Edit
			spr			Main Script Required		
LS-DYNA [2]	~		Node Count			Configuration		Edit
MPM			2	Ci	ear	Queue	skx	
OpenFOAM			Allocation		_	Maximum Job Runtime (minutes)	120	
OpenSees [4]	^				~	Node Count	2	
			BCS23027			Allocation	BCS23027	
			DesignSafe-Community			Outputs		Edit
			OTH24007			Job Name	opensees-mp-s3-3.6.0_2024-	-09-10T17:41:39
			TACC-ACI			Archive System	designsafe.storage.default	

DESIGNSAFE V

USER GUIDE

designsafe-ci.org

Search docs

Data Depot

- Managing Data
- Curating & Publishing Projects
- Recon Portal

Tools and Apps

- Analysis Applications
- Hazard Apps & Utilities
- Jupyter
- Visualization Applications

Simulation Applications

- Overview
- ADCIRC
- ClawPack
- Dakota
- LS-DYNA
- OpenFoam
- OpenSees
- OpenSees On DesignSafe
- OpenSees Applications
 OpenSees Platforms

Simulation Applications > OpenSees

OPENSEES USER GUIDE

3

TEXAS

The University of Texas at Austi

Decision Matrix for DesignSafe Platform for OpenSees

The following table provides a comparison of all the ways you can run OpenSees on the DesignSafe CI execution platforms and configurations. Each platform has different interfaces for you to interact with OpenSees. Items in the table are placed in order of complexity and recommendation.

Re	lative	D	esignSafe Platform	OpenSees Application					
Scope		Platform	Interface	Sequential OpenSees	Parallel OpenSees SP	Parallel OpenSees MP	OpenSees Py		
		Interactive	Linux Terminal	25	X	æ	Ø		
Si	mall	VMa	Python Jupyter Notebook	-	-		29		
			Python Console	-	-		25		
Small-Medium		Web	OpenSees-Express VM ^b		÷		-		
small-	wealum	Portal	Small-Queue HPC ^c	8	0	0	(#)		
			Jupyter Notebook ^e		1	Í	28		
Smal	II-Large	Jupyter Hub VM ^d	Console ^e		0	Ø	28		
			Linux Terminal	-	-	1.2	28		
Lai	rge –	HPC &	Linux Terminal	2	28	æ	294		
Extra	a-Large	TACC ^f	Launcher	8	0	0			
8	Run Seq	uential Opens	Sees Application Interactively –	small jobs					
×.	Run Para	Illel Applicati	on Interactively using MPI – sm	all jobs					
æ	Run Parallel Application Interactively using MPI – large jobs								
	Submit 9	equential-Ap	plication Jobs to the OpenSees	s-Express VM – sm	all jobs				
1	Submit I	Parallel-Applic	ation Jobs to HPC small queue	- small-medium io	bs				

UCLA TAGG RICE Florida Tech

User Guide

TOOLS & APPLICATIONS

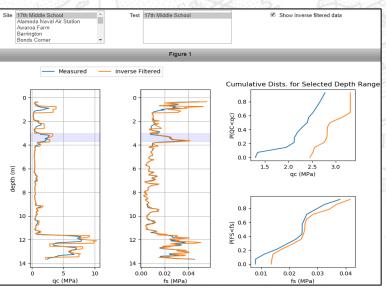
Simulating the impact of natural hazards requires significant computational power. These tools & applications will give you access to highperformance computing power from the world-class systems at Texas Advanced Computing Center.

Simulation

Coastal circulation and	CIRC I flooding model.		• OpenSees	Determine the response of a strue earthquake.		
Flood • Hurricane/Tropical Storm • Storm Surge			Earthquake		Earthquake	
Popular	Open Source	Popular	Open Source	SimCenter	o	

Analysis

RICE



Jupyter

Jupyterhub

Next Generation Liquefaction

- JupyterHub/Lab in DesignSafe
 - Access to Data Depot files
 - HPC Jupyter
- Interactive data viewer
- Scripts for data processing, AI / ML
- Publish for use by others
- Accelerates data reuse, adoption of approaches into practice

Florida Tech

From Scott Brandenberg (UCLA)

TACC

RICF

JUPYTER OVERVIEW

The Jupyter Notebook is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.

Learn How to Use Jupyter

Read step-by-step instructions on getting started and a detailed breakdown of version differences in the User Guide.

User Guide

Video Tutorials

WEBINAR - Unleashing Python and Jupyter in DesignSafe, March 1, 2017
WEBINAR | PART 1 - Jupyter, Python, and the Scientific Workflow, Oct. 26, 2016
WEBINAR | PART 2 - Jupyter, Python, and the Scientific Workflow, Oct. 26, 2016
A Jupyter/Tapis workflow for processing, visualization, & analysis of experimental & field wind data
WEBINAR - Launching numerical simulations using Jupyter, March 28, 2018

Select a Version	
Jupyter Hub	Get Started
Access the Jupyter ecosystem.	
Jupyter Lab HPC (CPU)	Get Started
Launch an interactive Jupyter instance running on a Frontera compute node. Community Data, Publications, and your HPC Work directory will be available within the session.	
Jupyter Lab HPC (GPU)	Get Started
Launch an interactive Jupyter instance running on a Frontera RTX node with CUDA enabled. Community Data, Publications, and your HPC Work directory will be available within the session.	

Florida Tech

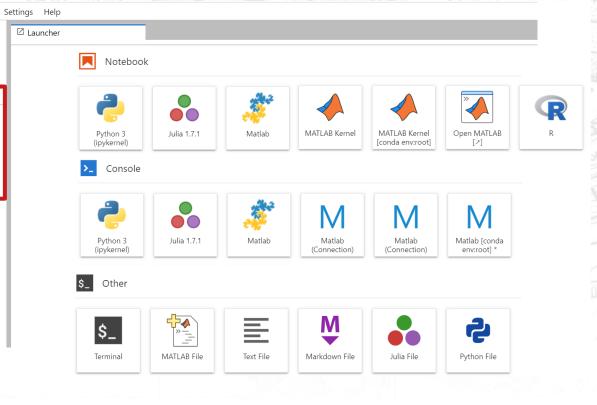
RICE

Available Jupyter Images

JupyterLab-2022 JupyterLab-2024 JupyterClassic-2020

https://jupyter.designsafe-ci.org

JupyterLab-2024 (released August 2024) is the recommended default image. This JupyterLab interface supplies Python 3.9 as its default Python interpreter. The image provides fewer pre-installed APT and Python packages to allow it to remain light and flexible. Temporary package installations can be performed using pip or conda. Persistent installations can be created and shared between users using the kernelutility Python package.



a - o curret fy Arenach

С Kernel Edit View Tabs File Run 1 С Q Filter files by name 0 Last Modified Name . ≣ CommunityData 12 hours ago HPC-Work 2 months ago MyData 2 months ago NEES 4 years ago NHERI-Publish... 2 hours ago 3 hours ago projects 🖿 tapis 15 days ago

UCLA TACC

RICE Florida Tech

HPC Jupyter

- Jupyter images deployed directly on HPC resources
- Jupyter Lab HPC (CPU)
 - CPU compute nodes on Stampede3, provides more memory and speed
 - Well-suited for data processing and parallel computing using 56 cores
- Jupyter Lab HPC (GPU)

SE NHERI 💓

- NVIDIA RTX GPU nodes on Frontera
- Commonly used Python AI packages (e.g., TensorFlow and PyTorch) are pre-installed

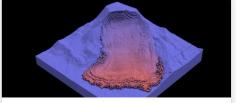
Florida Tech

Well-suited for AI/ML applications

Use Cases > Overview

DESIGNSAFE USE CASES

DesignSafe provides a wide variety of resources that allow researchers to effectively share, find, analyze, and publish data; perform numerical simulations and utilize high performance computing (HPC); and integrate diverse datasets.


To help users fully embrace DesignSafe functionalities, we have developed a suite of Use Cases that demonstrate how DesignSafe is being used to advance natural hazards research. Practical products, examples, and scripts developed as part of these Use Cases are provided for each Use Case. The different simulation codes, tools, and DesignSafe resources used in each Use Case are also indicated.

Make sure you are logged into DesignSafe so that you can access the Use-Case products.

Data Analytics

Analyze data from multiple datasets, with A.I. and Machine Learning, or via APIs or visualization.

GeoHazard

Geological hazard use cases like liquefaction and landslide modeling.

Use Cases

Search docs

Overview

- Data Analytics
- Basic Image Browsing and Mapping

designsafe-ci.org

- Grouping and Tagging Image Files
- Multi-Data Set Image Analysis in Taggit
- ML and AI
- Application Programming Interfaces
- Visualization of spatially distributed data
- GeoHazard
- Seismic
- Wind and Storm Surge

USER GUIDE designsafe-ci.org

Search docs

Use Cases

Overview

- Data Analytics
- Basic Image Browsing and Mapping
- Grouping and Tagging Image Files
- Multi-Data Set Image Analysis in Taggit
- ML and AI
- Application Programming Interfaces
- Visualization of spatially distributed data
- GeoHazard
- Seismic
- Wind and Storm Surge

Use Cases > GeoHazard > NGL Database

NGL Database

Next Generation Liquefaction (NGL) Database Jupyter Notebooks

Brandenberg, S.J. - UCLA Ulmer, K.J. - Southwest Research Institute Zimmaro, P. - University of Calabria

The example makes use of the following DesignSafe resources:

Jupyter notebooks on DS Juypterhub NGI Database

Understanding the Database Schema

The NGL database is organized into tables that are related to each other via keys. To query the database, you will need to understand the organizational structure of the database, called the schema. The database schema is documented at the following URL:

https://nextgenerationliquefaction.org/schema/index.html

Querying Data via Jupyter Notebooks

Jupyter notebooks provide the capability to query NGL data, and subsequently process, visualize, and learn from the data in an end-to-end workflow. Jupyter notebooks run in the cloud on DesignSafe, and provide a number of benefits compared with a more traditional local mode of operation:

- 1. The NGL database contains many GB of data, and interating with it in the cloud does not require downloading these data files to a local file system.
- 2. Users can collaborate in the cloud by creating DesignSafe projects where they can share processing scripts.
- 3. The NGL database is constantly changing as new data is added. Working in the cloud means that the data will always be up-to-date. 4. Querying the MySQL database is faster than opening individual text files to extract data.

This documentation first demonstrates how to install the database connection script, followed by several example scripts intended to serve as starting points for users who wish to develop their own tools.

Installing Database Connection Script

Connecting to a relational database requires credentials, like username, password, database name, and hostname. Rather than requiring users to know these credentials and create their own database connections, we have created a Python package that allows users to query the database. This code installs the package containing the database connection script for NGL:

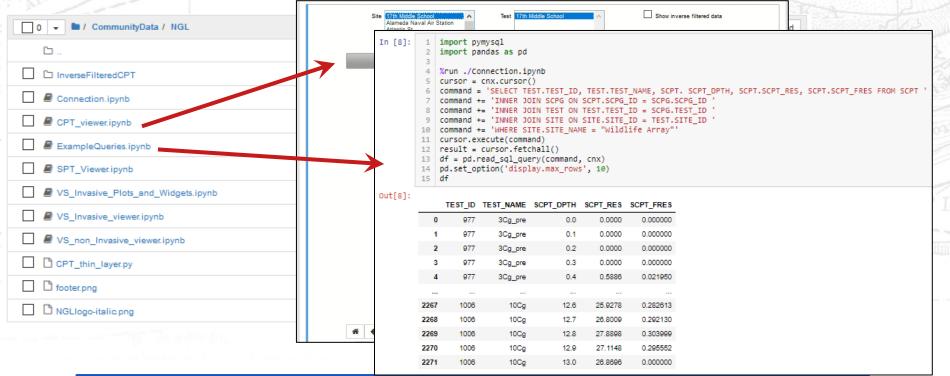
!pip install git+https://github.com/sibrandenberg/designsafe db

Use Cases

Use Case Incorporating Jupyter

NGL: Community database of liquefaction case histories

Next Generation Liquefaction (NGL)

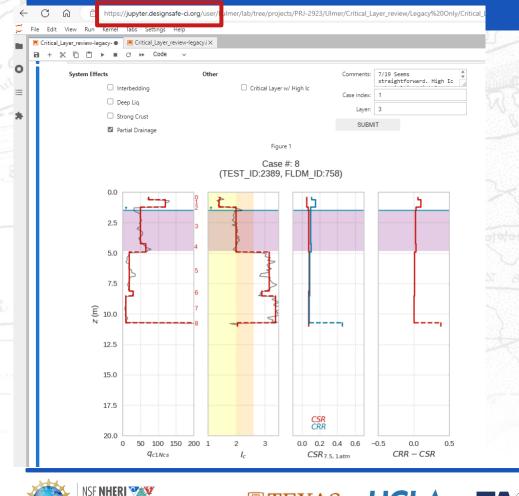

- Data housed in SQL database
 - http://nextgenerationliquefaction.org/schema/index.html
- Database replicated to DesignSafe daily
- Jupyter notebooks to access data available in DesignSafe

From P. Zimmaro, UCLA

NGL Jupyter Notebooks

Florida Tech

RICE


Use of DesignSafe by NGL Team

- Current NGL database
 - 450+ sites
 - 1000+ CPT, 1000+ boreholes
 - 200+ Vs profiles
 - 10,000+ lab tests (FC, PI, grain size, triaxial, simple shear)
- Data interpretation and analysis taking place in DesignSafe Jupyter
- Always working with the most up to date dataset

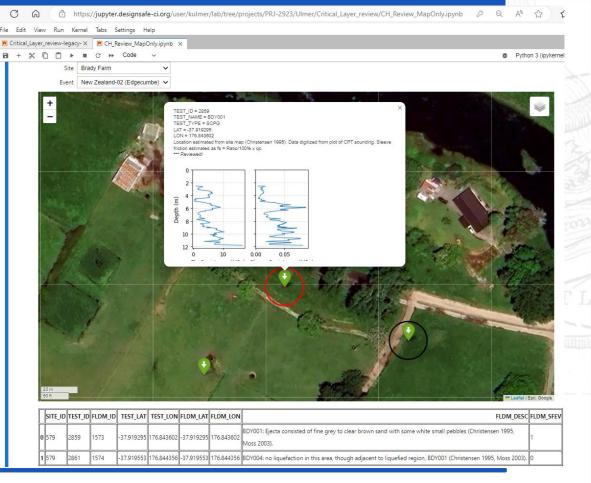
From Kristin Ulmer (SWRI) and Scott Brandenberg (UCLA)

RICE

ESIGNSAFE

UCLA

Critical Layer Evaluation


 Liquefaction analysis of surface profiles to identify "critical layer"

RICE

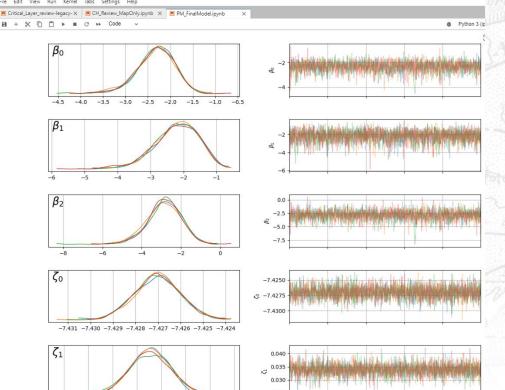
TACC

Data Integration

- Liquefaction site with:
 - Field liquefaction observations
 - CPT/borehole locations
- CPT/borehole results
 - Lab test results

0

≡ *


Florida Tech

https://jupyter.designsafe-ci.org/user/kulmer/lab/tree/projects/PRJ-2923/Hudson/PM_FinalModel.ipynb

2 Q AN

File Edit View Run Kernel Tabs Settings Help

← C A

UCL

Data Analysis

Bayesian liquefaction
 triggering model derived
 using pyMC witinh
 DesignSafe JupyterHub

Florida Tech

RICE

Community Impact

A snapshot of our community impact dating back to July 2015:

- > 9,000 user accounts
 - 304 marker paper citations https://doi.org/10.1061/(ASCE)NH.1527-6996.0000246

FACC

- 100 training events, > 5,000 attendees
- > 200 outreach events
- ~350,000 web hits online training/documentation
- ~1,000 published datasets
- > 330,000 Slack posts

Concluding Remarks

- Data, tools, and computational resources have always been critical in natural hazards research
- Research advancements are facilitated by formal electronic publishing of data, scripts, tools, workflows, etc.
- DesignSafe links the pieces together
 - Co-location of data, tools, and computational resources
 - Lowers the barriers of entry for new researchers
 - Facilitates computational workflows that enable surrogate modeling, Al and ML, uncertainty quantification, model calibration, etc.

TACC

