Using Copilot with Vim / Neovim

October 24, 2024

Rory Kelly
CISL / CSG

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Background and Prereqs

This is an overview of setting up Copilot to work in Vim and Neovim. I'll briefly
cover two plugins, one which works in both Vim and Neovim, and one that only
works in Neovim. There are many other plugins I’'m not covering, including ones
for Llama, Gemini, and other models.

- (official github product, works with vim/nvim)
- (3rd party plugin, works with nvim only)

In the remainder of this presentation, I’m assuming you’re a vim user, but not
necessarily an advanced one. But you should be able to open, write, and save
files, navigate windows, copy/paste etc.

https://github.com/github/copilot.vim
https://github.com/CopilotC-Nvim/CopilotChat.nvim

Copilot.vim -- Setup

Repo at: https://github.com/qgithub/copilot.vim ‘

1.
2.

Have a registered Copilot account associated with your Github account
Install vim (9.0.185 +) or any version of neovim.

On Derecho, using /usr/bin/vi or /usr/bin/vim will work. The vim included in the ncarenv modules is
too old to work with copilot.vim.

Install Node.js

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.0/install.sh | bash

nvm install 20

Install Copilot.vim
git clone https://github.com/github/copilot.vim.git \
~/ .vim/pack/github/start/copilot.vim

Setup

start vim and do

:Copilot setup

https://github.com/github/copilot.vim

Copilot.vim -- Usage

By default Copilot will make suggestions as you type.
You can cycle through suggestions and accept or dismiss them.

You can also partially accept them by word or line.
Autocomplete can also be turned off (:Copilot disable) and you can then ask Copilot to suggest a completion

as desired.

// A C program to compute the collatz sequence of a number

#include <stdio.h>

1ht collatz(iht

1 F
L

return 1;
} else if (n % 2
return collatz(n/2);
} else {
return collatz(3*n + 1);

Copilot.vim -- Usage

e You can also open a panel (:Copilot panel) to view multiple suggestions at once.
e You can cycle through them and accept one you like (I tend to just copy/paste portions between buffers).

Iynthesized 10 completions // A C program to compute the collatz sequence of a number
Press <CR> on a completion to accept

#include <stdio.h>
void collatz(int n)

{
while (n != 1)
{
printf("%d ", n);
if (n % 2 == 0)
n=n/2;
else
n=3%na+1;
}
printf("1\n");

main()

int n;

printf("Enter a number: ");
scanf("%d", &n);
collatz(n);

return 0;

Run the program using the following command:
gcc program.c -o program && ./program

Enter a number: 12

126 3 10°5 1684 -2 &

The output is the collatz sequence of the number 12

The collatz sequence of a number is a sequence of numbers
generated by the following rules:

If the number is even, divide it by 2

Copilot.vim -- Setup

The default key bindings may or may not work well for you depending on your platform, terminal
application, etc.

On a Mac with iTerm2, | did not like the default keybindings, so reassigned a few in my .vimrc (or init.lua for
nvim, more on that later)

Suggestions can also be tailored a bit more specifically by letting copilot look at more of your code for
context.

key bindings In ~rory/.vimrc

imap <silent><script><expr> <M-a> copilot#Accept ("\<CR>")
let g:copilot no tab map = v:true

imap <M-w> <Plug>(copilot-accept-word)

imap <M-1> <Plug>(copilot-accept-line)

imap <M-d> <Plug>(copilot-dismiss)

imap <M-s> <Plug>(copilot-suggest)

let g:copilot workspace folders = ["~/projects/"]

Back your .vimrc up before making changes!

CopilotChat.nvim -- Setup

Repo at: https://github.com/CopilotC-Nvim/CopilotChat.nvim ‘

1.
2.

Have a registered Copilot account associated with your Github account

Install any version of neovim. Binaries available at
https://github.com/neovim/neovim/blob/master/INSTALL.md#linux

Install Copilot.vim (see previous section for details)
Install CopilotChat.nvim with your favorite package manager

https://github.com/CopilotC-Nvim/CopilotChat.nvim?tab=readme-ov-file#installation

Setup -- nothing more to do if Copilot.vim is setup. But you can customize settings

~/.config/nvim/init.vim OFr

~/.config/nvim/init.lua

https://github.com/neovim/neovim/blob/master/INSTALL.md#linux
https://github.com/CopilotC-Nvim/CopilotChat.nvim?tab=readme-ov-file#installation
https://github.com/CopilotC-Nvim/CopilotChat.nvim

CopilotChat operates similarly to the ‘panel’ mode in Copilot.vim, but is
generally more powerful, more flexible, and contains some special features.

CopilotChat.nvim -- Usage

CopilotChat commands

:CopilotChatOpen / :CopilotChatClose
:CopilotChat <prompt>
:CopilotChatModels
:CopilotChatExplain

:CopilotChatReview
:CopilotChatFix
:CopilotChatDocs
:CopilotChatTests
:CopilotChatModels

CopilotChat.nvim -- Usage

:CopilotChat example

1 ## User

write a C function that prints the collatz sequence of a given
input integer

Copilot #include <stdio.h>

#include <stdio.h>

void print_collatz_:
if (nh <=0
printf("Input must be a positive integer.
return

1
"% ", n
2 == 0
n 2

L

1ain
int number
rintf("Enter a positive integer:
1£("%d", &number
rint_collatz_sequence(number
return 0

CopilotChat.nvim -- Usage

:CopilotChat example

int main
int number
printf("Enter a positive 1integer:
scanf("%d", &number
print_collatz_sequence(number
return 0: #include <stdio.h>

User
that's great, but now give me the same function in python

Copilot

latz_sequence

"Input must be a positive integer."

1D _ ‘__main__
' "Enter a positive integer:
uence(number

CopilotChat.nvim -- Usage

:CopilotChatExplain example

User

Write an explanation for the active selection as paragraphs of float blaarg(int float
text. if (float(n) > x
return float(n
Copilot
else
The provided code defines a function named blaarg in C++. This return 1.618033 * x
function takes two parameters: an integer n and a floating-point
number x. The purpose of the function is to compare the integer
n (converted to a float) with the floating-point number x and
return a value based on this comparison.

The function begins by checking if the float representation of n
is greater than x. This is done using the expression float(n) >

Xx. If this condition is true, the function returns the float
representation of n. This conversion ensures that the comparison
is made between two floating-point numbers, which avoids potential
issues with comparing different data types.

If the condition float(n) > x is not met, the function proceeds
to the else block. Here, it returns the product of x and the
constant 1.618033, which is an approximation of the golden ratio
(9). This constant is often used in mathematical contexts and can
be significant depending on the application's domain.

Overall, the blaarg function is a simple conditional function
that either returns the float representation of an integer or a
scaled version of a floating-point number based on a comparison.
This function could be useful in scenarios where such conditional
logic is needed, although the specific use case is not clear from
the provided code alone.

CopilotChat.nvim -- Usage

:CopilotChatDocs example

User

Please add documentation comment for the selection. float blaarg(int float
if (float(n) > x
Copilot return float(n

else

return 1.618033 * x

float blaarg(int float
if (float(n) > x
return float(n

return 1.618033 * x

CopilotChat.nvim -- Usage

One feature of CopilotChat.nvim that | really like is the ability to easily
switch LLM models (within the family)

:CopilotChatModels

Select a model
: gpt-3.5-turbo-0013
. gpt-4-0013
: gpt-40-2024-05-13
: gpt-40-2024-08-006
. gpt-40-mini1-2024-07-18
. gpt-4-0125-preview
Type number and <Enter> or click with the mouse (g or empty cancels): I

CopilotChat.nvim -- Usage

That’s a brief overview of using Copilot features in Vim and Neovim. If
you are an Emacs person it works there too.

Ben will explain setting up in Emacs next.

I’m happy to take questions now or later

