
3. Alternative Methods
Gather-sort-scatter

• Each process reads a subset of the observation
sequence (binary file traversed with fseek)

• All observations are retrieved by the first process

• Observations are sorted in time order

o Each process receives observations in a specific
time window; traversing time window does not
require access to other processes’ observations

• New observation sequence split into subsets and
scattered to every process

One-sided communication

• Each process reads a subset of the observation
sequence

• Each process opens a memory window to the
observations they own

• Processes use one-sided operations to retrieve
observations not available in their local memory from
other processes’ memory windows

= window 1

= window 2

= window 3

= window 4

= window 1

= window 2

= pe 0

= pe 1

= pe 0

= pe 1

= pe 2

= pe 3

1. Background
• The Data Assimilation Research Testbed (DART) combines

real-world observations and model forecasts to improve
our understanding of the Earth system

• Current parallelization efforts have so far split the state
variables and forward operator calculations across
multiple processors; however, the observation sequence
has not been parallelized yet, resulting in time-consuming
reads of the sequence and excessive memory
consumption resulting from observation duplication.

• This project’s goal is to provide a distribution method
which efficiently load balances the observation sequence.

+++d

2. Current Method
• Each process reads in a copy of the observation sequence

• Processes reference their own copies of the observation
sequence when assimilating state and calculating forward
operators

• Observations are ordered in a linked list; order in which
linked list is traversed is from earliest to latest observation
time

• Current method provides immediate access to every
observation in observation sequence across all
processes

• Number of observations which can be stored in single set
is limited to the available memory on a single process
(see below)

o Ex. Each node on Derecho has 256 GB, and each node
has 128 processes. 256 / 128 = 2 GB per process

= window 1

= window 2

= pe 0

= pe 1

Developing and Evaluating Methods for Distributing Observations in DART using MPI*
Kamil Yousuf, Helen Kershaw, Marlee Smith

5. Conclusion

4. Performance Results
Gather-sort-scatter

Scaling: 64,950,921 observations

Scaling: 208,901,231 observations

One-sided communication
Retrieval speed: 64,950,921 observations

Peak per-process memory usage

*smallest = 64,950,921 observations

• We developed and evaluated two methods which
can be used to distribute observations across
processes when observations are split

• Time to read observations is reduced by
increasing number of processes reading
observation sequence

• Reducing observation sequence duplication
allows more observations to be stored

• Both models have drawbacks; ideal distribution
method would combine methods from both
distribution types

of obs: 64,950,921 208,901,231 626,703,695

Gather 7.46 GB 23.6 GB 70.5 GB

One-sided 205 MB 279 MB 462 MB

1

1

Scaling: 626,703,695 observations

• Time to read observation sequence from file
reduces as more processes read from file

• Scaling is constrained by sequential (single
process) sort of observations by time order

o One process has every observation during “sort”
step; sequence size constrained by per-node
memory (each process can only directly access
memory on its node)

o Parallel sorting algorithms (ex. Sample-sort) may
alleviate this constraint

• Peak memory per-process is reduced from gather
model, since observations are not collected on
single process and sorted

o Observations can be read in time-sorted order
by traversing the linked list using one-sided
communication

• Retrieval of observations worsens as number of
processes increases

• One-sided retrieval time reduced when keys of
observations to be retrieved are already known by
process; multiple gets can be performed
simultaneously

1

1

1

1: Ideal time: time assuming perfect parallelization of all operations in program.
Calculated using (time @ 1 core) / (total num. of processes)

*MPI: Message Passing Interface

