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Motivation

Winter precipitation hazards, such as rain, snow, freezing rain, and
sleet, significantly impact human safety and transportation.

Objectives

e Enhance model accuracy and reliability through hyperparameter
optimization and quality control of training data.

e Analyze model performance against Numerical Weather Prediction
models and investigate failure modes

e Develop visual representations of model results to ensure
transparency and reliability for forecasters.

Model Framework

The Precipitation Type (P-Type) Model is similar to a simple dense
neural network with a custom evidential loss function.

Quality Control

e Locate closest grid cell to mPING coordinate

e Snow: surface wet-bulb temp < 3°C

e Rain: surface wet-bulb temp > -1°C

e Freezing Rain & Sleet: wet-bulb temp < 0°C and at least 1

temperature crossing from -2 to 1°C

TLE 2023-12-25 1400 Precip Evidential
Snow: blue, Rain: green, Sleet: purple, Freezing rain: red

QC TLE 2023-12-25 1400 Precip Evidential
Snow: blue, Rain: green, Sleet: purple, Freezing rain: red
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Figure 2: mPING before QC
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Figure 3: mPING after QC
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Analysis
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Figure 7: P-Type model output with overlayed HRRR features
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Figure 4: Wetbulb temp distribution pre and post qc
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Hyperparameter Optimization

Earth Computing Hyperparameter Optimization (ECHO) aims to

. . Figure 8: Epistemic uncertainty outputs
algorithmically fine-tune model parameters. 5 P y outp

Figure 1: Architecture of P-type Model

Figure 6 shows a case study with categorical precipitation types scaled
by probability, including High Resolution Rapid Refresh (HRRR) in-
puts such as winds and surface temp. Both plots show how the P-Type

Val Set Val Set

Model inputs: Rapid Refresh (RAP) temperature, dew point, u PR 00t 000
and v wind at 21 heights levels from 0 to bkm

Model outputs: Probabilities of rain, snow, sleet, and freezing rain,
including an uncertainty class, which represents epistemic (evidential)

model uses inputs in its prediction and builds trust by providing in-
sights into the confidence and reliability of the model’s predictions.

uncertainty. Epistemic and aleatoric uncertainties are computed from
the probability outputs.
Target: mPING crowd-sourced weather reports

Conclusion
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e Quality control procedures combined with ECHO optimization
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improves model performance

Figure 5: Confusion Matrix Norm=true Figure 6: Confusion Matrix Norm=pred
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e Case studies show evidence of model performance and help
forecasters understand the basis for its predictions.

e Metric: Average Validation Accuracy



