Graph Machine Learning for Global Weather Prediction: Graph Residual Transformer + Gated Recurrent Unit (GRU) Arnold Kazadi

Machine Learning -**Potential for Global** Weather Forecasting

Machine Learning for global weather prediction:

- Competitive with top physics-based models (e.g., IFS-HRES)
- Faster (45,000x)
- Memory efficient

Figure 1:RMSE $[m^2/s^2]$ relative to IFS-HRES for Geopential at 500 hPa. (source: Weatherbench)

Existing Machine Learning Methods

- Most existing Machine Learning models for weather forecasting were initially developed for images and videos
- Mostly suitable for rectilinear grid-structured data
- Grids are not suitable for representing spherical objects such as the globe
- Regions at the poles are overrepresented
- Requires padding to ensure continuity of the domain
- 1° in longitude is 111 km at the Equator vs 56 km at 60° North/South.

Figure 2:Equirectangular projection of the globe (Source: Wikipedia)

- coordinate.
- Prognostic variables

Total Solar Irradiance

ERA5 span 1940

Each lat-lon location is linked to k(=49) nearest lat-lon locations based on the haversine distance.

https://www.linkedin.com/pulse/haversineformula-firebird-sql-calculatedistance-between-revelli/

Attention weight for message passing and summation for update operation.

 $v_2 = m_{3 \to 2}$

Mentors: David John Gagne, John Schreck, Charlie Becker, Gabrielle Gantos, Will Chapman Machine Integration and Learning for Earth Systems (MILES) - NSF NCAR, Boulder, CO

Dataset - ERA5

• 15 hybrid sigma-pressure coordinate (HSPC) levels: upper regions discretized by pressure and lower by sigma vertical

ong name	Level
stward wind	HSPC+500hPa
thward wind	HSPC+500hPa
emperature	HSPC+500hPa
eific humidity	HSPC+500hPa
emperature	2m from surface
otential height	500 hPa

• Static and forcing variables: Land-sea mask,

	Train split	Valida split	tion	
1979		2014	2018	

Graph Generation from $\mathbf{ERA5}$

Graph Transformer

Proposed Method: Graph Residual Transformer + GRU

Figure 3: **Top-**Overall architecture. **Bottom-**Details of the GRT layer.

Our proposed model, **GRT-GRU** (~ 3 M parameters), is compared with • **Crossformer**: Vision transformer-based model (~ 292 M parameters) • **GRT**: GRT-GRU without GRU module

• **GT**: GRT without the residual connection

Experiments: Results

Mean (solid line) and standard deviation (shade) with first day of every month of 2020 (top) and 2022 (bottom) as initial condition.

• Residual connection reduces error by factor of 2 (GT vs GRT) • GRU further reduces error by factor of 1.2 (GRT vs GRT-GRU)

Experiments: Visualization

Future Work

• Explore larger model (trained with fully shared data parallel)

Contact Information

Emulation video