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(a) HOLODEC

Introduction - Holographic Data Inference

Inference speed: 7 holograms/hr per NVIDIA A100
Easily scalable across arbitrary number of GPUs
Post-processing performed to extract particle
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Motivation: | * Synthetic dataset matches HOLODEC properties | Hologram 0 |
* ML has potential to process many types of and can be useful due to truth labels iustered kred: 284 True Coords: 500
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Standard method of hologram processing is E 11an
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Challenges: : depths

* Extremely large quantities of unlabeled data
* Each hologram represents 3D space to process 0
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a) Particle Distribution on Synthetic Holograms b) Synthetic Test Holograms
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