



# Optimizing Ensemble Data Assimilation Performance for Coupled Earth System Models

A first prototype for in-memory data transfer between earth system models and Data assimilation

Suman Shekhar, Rutgers University, New Jersey Anh Pham, Dan Amrhein, Helen Kershaw, Ufuk Turuncoglu, Dan Rosen

# Introduction

- Method: Building the DART cap
- Results
- Future work



#### **Introduction:** What is an Earth System Model?

# Community Earth System Model (CESM)





#### Introduction

# Climate Change is a complex problem!



### **Introduction**: How can we address challenges of predictability?

### We need both data and algorithms to connect the dots



Algorithm: Data assimilation combines observations with model forecasts to estimate the state of a physical system

### DA in a nutshell







#### DATA ASSIMILATION FOR THE ENTIRE EARTH SYSTEM

Use ensemble DA techniques with geophysical models spanning the earth system.

### Introduction: What is the proposed solution?

Challenge: I/O bottleneck of models -> DART -> models Solution: In-memory transfer of fields leveraging NUOPC software layer

- Coupled models like CESM already exchange fields in memory using Earth System Modeling Framework (ESMF) utilities.
- We are proposing to integrate DART software as a model component within CESM and use NUOPC libraries to create a cap for DART software to access the model state in memory.



# Introduction

- Method: Building the DART cap
- Results
- Future work



### Building the DART cap: Background on ESMF and NUOPC

### Difference between ESMF and NUOPC

- Software Stack: ESMF (Earth System Modeling Framework) provides essential utilities and libraries for building and integrating parts of Earth system models.
- NUOPC (National Unified Operational Prediction Capability) builds on ESMF, offering standards and guidelines to connect components into a complete, operational model.



### Example of coupling atmospheric model and ocean model



The NUOPC layer includes four types of generic components: model, mediator, connector, and driver. We focus on the NUOPC model component, which wraps model codes (like atmosphere, ocean, or ice) to expose NUOPC-specified interfaces, ensuring compliance with the NUOPC layer.

### Building the DART cap

## Structure of DART-NUOPC Framework

- We started testing the DART-NUOPC cap code by coupling with a CDEPS (Community Data Models for Earth Prediction Systems) data model component and went for ocean component for ease of use (and also because the ocean is the best component).
- Since DART is not a model but a software, we had to specialize the NUOPC cap to make it appear as a model to other model components and the following points we had to take care of -

DART builds as an executable.
 DART doesn't need any operation to be done on State Variable.
 DART doesn't have its own Grid/Mesh.
 DART doesn't step forward in time.





### Method-Building of DART cap

## 1. Building DART as library

- DART is already an independent component.
- NUOPC wants your model to built as a library.
- DART needs to be roughly divided into several execution methods: *initialize, run, and finalize*.

MODULES THE DART BUILD SYSTEM

### Method-Building of DART cap

## 2. No need of Mediator in case of DART

 Unlike models, DART doesn't want to do any custom operations on the state variable, and therefore don't need mediator component.



#### Method-Building of DART cap

# 3. Field Mirroring & Receiving Grid/Mesh

 Generalizing DART-NUOPC cap to accept all the field that the ocean model component must provide for DA and to get comfortable with both Mesh and Grid



A **structured** representation of a region, such as a logically rectangular tile or set of tiles

#### Mesh

An **unstructured** representation of a region including 2D polygons with any number of sides and 3D tetrahedra and hexahedra







# 4. DART Time Stepping

 DART software doesn't have a clock which advances in time, and to make it appear as a model component we synchronized DART-NUOPC cap clock with the Driver's clock.

```
runSeq::
@1800  # 30min time step
OCN
OCN -> DART
DART
DART -> OCN
@
::
```

A driver with two model components (DART and OCN), and connectors.

Driver reads a run sequence from a yaml file

- Introduction
- Method: Building of DART cap
- Results
- Future work



## Coupling DART with OCN component



- DART appears to advance in time as a model component, confirming the proper integration and functionality of the NUOPC cap.
- The following figure represent the data flow and time stepping of DART and CDEPS OCN data model component in a coupled environment.

### Result: DART model component has successfully accepted the field in-memory!

 The Model Advance subroutine in NUOPC-DART cap correctly writes the accepted SST field to a VTK file, demonstrating that the field is transferred in memory.



# Introduction

- Method: Building of DART cap
- Results
- Future Work



#### Future Work

### Future Work

Integration with CESM



• Performance Testing with 3D Fields



#### Future Work

### Future Work

Optimizing Processor
 Distribution





• Ensemble Field Transfers





**Reference Slides** 

#### Project Component: CDEPS – ESMF based data model infrastructure

### NUOPC compliant Data model component

CDEPS contains ESMF/NUOPC compliant data components that are modular and flexible: Can be used in any ESMF/NUOPC compliant modeling system

Main building block is the data stream.All fields in a stream are located in the same data file/s

• All share same spatial and temporal properties

 Data models can have multiple streams: e.g., SST data could originate from OISST and precipitation data could come from CRU.

All data is read with parallel IO (PIO2)

### Project Component: ESMF - Earth System Modeling Framework

## Framework for Coupled Modeling

The Earth System Modeling Framework (ESMF) is high-performance software infrastructure used in coupled Earth science applications.

#### Key Features:

- Standardized Interfaces
- High-Performance Coupling
- Modularity and Reusability
- Support for Parallelism
- Interoperability





**Coupling infrastructure** in a modeling system (includes the NUOPC Layer)

### Introduction: What makes prediction challenging?

### Model Biases!

- Climate Model Large Ensembles Unable to Reproduce
   Observed Trends
- Discrepancies between simulated and observed fields are commonly referred to as biases
- All models have a bias. Bias occurs because models are a mathematical representation of a highly complex system which is a simplification of the reality of many processes. Models can have bias because of limiting spatial resolution or incomplete knowledge of how a process works.



### I/O bottleneck: Models -> DART -> Models

#### Current Approach:

#### •File-Based Data Transfer:

- DART modifies "**restart**" files written to **disk**.
- Frequent writing and reading of files introduce significant I/O overhead.
- Disk I/O operations are inherently slower than in-memory operations.

#### Model Execution Disruptions:

- Model needs to stop for file write/read operations.
- Stopping and restarting the model reduces overall computational efficiency.



### Building of DART cap

## Specializing DART Generic Model Component

| ESMX_DARTOcnProto > NUOPC_DART-code-development > DART > models > cdeps > work |                                                        |
|--------------------------------------------------------------------------------|--------------------------------------------------------|
| 2 m                                                                            | odule dart_comp_nuopc                                  |
| 57 >                                                                           | <pre>subroutine SetServices(dgcomp, rc)…</pre>         |
| 111                                                                            | end subroutine SetServices                             |
| 112                                                                            |                                                        |
| 113                                                                            |                                                        |
| 114 >                                                                          | <pre>subroutine InitializeAdvertise(dgcomp, rc)…</pre> |
| 153<br>154                                                                     | end subroutine InitializeAdvertise                     |
| 155 >                                                                          | <pre>subroutine ModifyAdvertise(dgcomp, rc)</pre>      |
| 282                                                                            | end subroutine ModifyAdvertise                         |
| 283                                                                            |                                                        |
| 284 >                                                                          | <pre>subroutine RealizeAccepted(dgcomp, rc)</pre>      |
| 445                                                                            | end subroutine RealizeAccepted                         |
| 446                                                                            |                                                        |
| 447 >                                                                          | <pre>subroutine SetClock(dgcomp, rc)</pre>             |
| 515                                                                            | end subroutine SetClock                                |
| 516                                                                            |                                                        |
| 517 >                                                                          | subroutine ModelAdvance(dgcomp, rc)…                   |
| 609                                                                            | end subroutine ModelAdvance                            |
| 610                                                                            |                                                        |
| 611 >                                                                          | subroutine Statewritevik(state, prefix, rc)            |
| 672                                                                            | end subroutine Statewritevik                           |
| 674                                                                            |                                                        |
| 675                                                                            | nd module dart comp puone                              |
| 676                                                                            |                                                        |



Method-Building of DART cap: National Unified Operational Prediction Capability (NUOPC)

# Recap: NUOPC generic component layers

• A NUOPC component is an ESMF component with specified rules of behavior depending on the component's role in the coupled system.

