
This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

Jefferson Boothe,
University of Pittsburgh

NSF NCAR SIPARCS 2024 & MILES
Mentors: John Schreck, Matthew Hayman

CISL (AIML), EOL

Distributed Holographic Image Processing 
with Neural Networks

July 31, 2024



Introduction

Project Goals: Improved performance and scalability of hologram processing

Hologram: A three-dimensional image of space formed by the interference of light beams

• What kinds of holograms are we interested in?

• What are we hoping to discover?

• How do we processes these holograms?

• How well are we performing?



The HOLODEC cloud particle detector

● The HOLODEC-II is a second-generation version of a holographic cloud probe [1, 2].

● Designed to determine the size, two-dimensional shape, and three-dimensional position of 
hydrometeors via digital in-line holography. 

HOLODEC-II on workbench at RAF HOLODEC-II installed on C-130



● The identification program used to process RF07 is referred to as the standard method [4, 5].

HOLODEC holograms – Cloud Systems Evolution in Trades project (CSET)

● Each is megapixel in size 

● 14.42 mm x 9.61 mm (4872 x 3248 
pixels = 2.96 µm/px)

● Other holograms in CSET may 
contain up to 10,000 droplet 
particles!



Wave-propagation to refocus holograms along the axis orthogonal to the detector arms (z)

● Wave propagation takes a hologram plane at (x,  y,  z) and reconstructs it a distance 𝝙z away 
to the plane at (X, Y, Z). 

● Can do this because we have the phase information. 
● Don’t know where particles are so we must search across all depths.
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Wave-propagation to refocus holograms along the axis orthogonal to the detector arms (z)



Using a neural network to predict particle position and shape

● Convolutional neural network (CNN) model to predict “masks” over in-focus particles [6]
● From a predicted mask, can estimate (x, y, zj, d)
● CNN can predict arbitrary number of particles per image
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● Same optical settings as physical 
instrument

● 500 particles per hologram 
positioned along z

● Train (100 holograms), validation 
(20), and testing (10) sets 
produced

● Truth masks easily created for 
synthetic images

● Noise can be applied to mimic 
holograms from CSET

Simulated (synthetic) holograms because no truth labels for the real data



Neural Network Training

● Plot of Dice Loss on validation data 
per epoch of best-performing model

● Trained using Pytorch DDP across 
4-NVIDIA A100 GPUs on Derecho

● Trained on 512x512 tiles of synthetic 
holograms and associated truth 
masks

● Inference speed:
○ 7 holograms/hr per NVIDIA A100
○ ~1500 GPU-hours per campaign



Post-processing: How can we extract meaning from masks?

CNN 

E D

So we can accept an image slice and generate a mask with ML:

How can we actually process full holograms for hydrometeor properties?



● Need to cluster predicted pixels in mask to 
obtain (x, y, z, d) data

● Neighboring 1-labeled pixels are grouped 
together

● Clusters are approximated to a circle and 
diameter is calculated

● Grouping is done on predicted masks of 
each plane for all z
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Results: 2D Clustering of Predicted Masks



● At first glance, results look quite similar to truth

● However, have significantly overpredicted the number of particles

Results: 2D Clustering of Predicted Masks



● Model has high False 
Positive rate in adjacent 
depths to true particle

● With N = 1,000, particles 
with large diameters 
most affected.

● Smaller particles 
increasingly affected as N 
grows

● Partially due to training, 
as images with in-focus 
particles were upsampled 
1-to-1

Results: 2D Clustering of Predicted Masks



● Each (x, y, z, d) represents 3D coordinates of a predicted sphere

● Cluster these coordinates again in all 
3 dimensions to remove depth-adjacent over predictions

● Use OPTICS algorithm to perform spatial clustering

Results: 3D Clustering of Predicted Coordinates



● Under-predicting extremely small particles (False Negatives)

● Larger errors around image edges in X and Y

Results: Synthetic Test Hologram Predictions
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● Closer look at the prediction difference 
on test set by particle diameter

● Significantly more accurate for particles 
at least 3 pixels in diameter

Results: Synthetic Test Hologram Predictions



● Accurately predicting the number of 
particles does not guarantee accurate 
liquid density measurements

● Mean particle count difference: 10.0%

● Mean liquid density difference: 7.89%

● Mean effective radius difference: 6.52%

Results: Synthetic Test Hologram Predictions

Lower is better



● Successfully detect ~90% of particles in synthetic test set
● More accurately predict physical properties, including liquid density and radius
● Efficient, scalable inference across arbitrary number of GPUs for campaign data processing

Possible Improvements:

● The model accuracy is not perfect, missing many small particles
○ Currently working on a more complex model that takes advantage of phase data and 

multiple depth planes
○ Potential for a 3D-UNET model that has found success in other fields
○ A more diverse training dataset could also improve performance

● Gathering and comparing results on CSET dataset against standard method

Conclusions and Future Work
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Questions
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Not getting all particles after clustering, because the model did not predict 
all particles in the first place
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● Matches are determined using a KDTree 
between pred and truth coordinates

● Only X, Y, and Z are used in matching

● Not all predictions are ‘good’ ones
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No seemingly obvious correlation
between any feature and
poor matches


