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Introduction

Project Goals: Improved performance and scalability of hologram processing

Hologram: A three-dimensional image of space formed by the interference of light beams

« What kinds of holograms are we interested in?
« What are we hoping to discover?

« How do we processes these holograms?

 How well are we performing?




The HOLODEC cloud particle detector

e The HOLODEC-II is a second-generation version of a holographic cloud probe [1, 2].

e Designed to determine the size, two-dimensional shape, and three-dimensional position of
hydrometeors via digital in-line holography.
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HOLODEC-II installed on C-130




HOLODEC holograms — Cloud Systems Evolution in Trades project (CSET)
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e The identification program used to process RF07 is referred to as the standard method [4, 5].




Wave-propagation to refocus holograms along the axis orthogonal to the detector arms (z)
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e \Wave propagation takes a hologram plane at (x, y, z) and reconstructs it a distance Az away
to the plane at (X, Y, 2Z).

e (Can do this because we have the phase information.

e Don’t know where particles are so we must search across all depths.




Wave-propagation to refocus holograms along the axis orthogonal to the detector arms (z)
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Using a neural network to predict particle position and shape
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e Convolutional neural network (CNN) model to predict “masks” over in-focus particles [6]
e From a predicted mask, can estimate (x, v, Z, d)
e CNN can predict arbitrary number of particles per image




Simulated (synthetic) holograms because no truth labels for the real data
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Neural Network Training

e Plot of Dice Loss on validation data
per epoch of best-performing model

e Trained using Pytorch DDP across
4-NVIDIA A100 GPUs on Derecho

e Trained on 512x512 tiles of synthetic
holograms and associated truth
masks

e Inference speed:
o 7 holograms/hr per NVIDIA A100
o ~1500 GPU-hours per campaign
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Post-processing: How can we extract meaning from masks?

So we can accept an image slice and generate a mask with ML.:
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Results: 2D Clustering of Predicted Masks

e Need to cluster predicted pixels in mask to
obtain (x, vy, z, d) data

e Neighboring 1-labeled pixels are grouped
together

e Clusters are approximated to a circle and
diameter is calculated

e Grouping is done on predicted masks of
each plane for all z
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Results: 2D Clustering of Predicted Masks

Predictions After 2D Grouping: N=1364 True Coordinates: N=500

e At first glance, results look quite similar to truth

e However, have significantly overpredicted the number of particles




Results: 2D Clustering of Predicted Masks
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Results: 3D Clustering of Predicted Coordinates
Hologram 0O
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Each (x, y, z, d) represents 3D coordinates of a predicted sphere

e Cluster these coordinates again in all
3 dimensions to remove depth-adjacent over predictions

e Use OPTICS algorithm to perform spatial clustering




Results: Synthetic Test Hologram Predictions
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Results: Synthetic Test Hologram Predictions

e Closer look at the prediction difference
on test set by particle diameter

e Significantly more accurate for particles
at least 3 pixels in diameter
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Results: Synthetic Test Hologram Predictions

Percent Differences Between Prediction and Truth
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Conclusions and Future Work

e Successfully detect ~90% of particles in synthetic test set
e More accurately predict physical properties, including liquid density and radius
e Efficient, scalable inference across arbitrary number of GPUs for campaign data processing

Possible Improvements:

e The model accuracy is not perfect, missing many small particles
o  Currently working on a more complex model that takes advantage of phase data and
multiple depth planes
o Potential for a 3D-UNET model that has found success in other fields
o A more diverse training dataset could also improve performance
e Gathering and comparing results on CSET dataset against standard method
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Thank you!
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Appendix
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Appendix

Predictions Before Cluster True Coordinates

Not getting all particles after clustering, because the model did not predict
all particles in the first place




Appendix

RMSE of each match
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Appendix

No seemingly obvious correlation
between any feature and
poor matches
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