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Machine Learning - Potential for Global Weather Forecasting

Machine Learning for global weather prediction
e Competitive with top physics-based models (e.g., IFS-HRES)
e Faster (45,000x)
* Memory efficient
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https://sites.research.google/weatherbench/deterministic-scores/

Existing Machine Learning Methods for Global Weather Prediction

¢ Most existing Machine Learning models for weather forecasting were initially
developed for images and videos
® Mostly suitable for rectilinear grid-structured data
¢ Grids are not suitable for representing spherical objects such as the globe
® Regions at the poles are overrepresented
® Requires padding to ensure continuity of the domain
® 1°inlongitude is 111 km at the Equator vs 56 km at 60° North/South.

Source: Wikipedia



https://en.wikipedia.org/wiki/Equirectangular_projection

Dataset - ERAS

ECMWF Reanalysis version 5 (ERA5)
¢ Reanalysis of the global climate from 1940 to present
e Hourly estimates of atmospheric variables (e.g., U, V, Q, Z, T)
e 137 pressure levels from surface up to a height of 80 km
e 1° resolution in latitude and longitude
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Processed ERA5

Preprocessed data used

* 15 hybrid sigma-pressure coordinate (HSPC) levels: upper regions discretized by
pressure and lower by sigma vertical coordinate.

® Prognostic variables

Variable Long name Level
U Eastward wind HSPC + 500 hPa
Vv Northward wind HSPC + 500 hPa
T Temperature HSPC + 500 hPa
Q Specific humidity | HSPC + 500 hPa
T2m Temperature 2m from surface
Z500 Geopotential height 500 hPa

e Static and forcing variables: Land-sea mask, Total Solar Irradiance




Graph generation from Processed ERA5

Each lat-lon location is linked to k(= 49) nearest lat-lon locations based on the haversine
distance.

Haversine distance.

Source: https://www.linkedin.com/pulse/haversine-formula-firebird-sql-calculate-distance-between-revelli/



https://www.linkedin.com/pulse/haversine-formula-firebird-sql-calculate-distance-between-revelli/

Graph Neural Network: A Brief Look

A graph neural network has two main operations: Message passing and Update operation
Messaging Passing

Toy example m3_,1 = g(v3,v1)
my_,1 = g(V4,V1)

m3_> = g(v3,v2)

Update Operation

vi =f(m3_1,ma_1)

Vo =f(m3)

g and f are user-defined functions.




Graph Transformer

A graph transformer defines an attention weight for message passing and summation for
update operation.
Messaging Passing

m3—1 = 03-1V3

Toy example
m4—1 = 0414

M3_y2 = 03523
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@ @ Update Operation

V] = M3 + M4
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Proposed Method: Graph Residual Transformer + GRU

Gated Recurrent Unit

Q——' MLP—»GRTJ L...LGRTJ LMLP_>+_,€_'.
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GRT: Graph Residual Transformer
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Transformer I

Top-Overall architecture. Bottom-Details of the GRT layer.




Experiments: Setup

ERAS Span Train Validation
split split
1940 1979 2014 2018
Test data

e 2018-**-01: First day of every month of 2018
e 2020-**-01: First day of every month of 2020
e 2022-**-01: First day of every month of 2022




Experiments: Baselines

Our proposed model, GRT-GRU (~ 3 M parameters), is compared with

e Crossformer: Vision transformer-based model (~ 292 M parameters)
¢ GRT: GRT-GRU without GRU module
e GT: GRT without the residual connection




Experiments: Results

RMSE_Z500 (year 2018)
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Mean (solid line) and standard deviation (shade) with first day of every month of 2018 (left) and

2020 (right) as initial condition.

¢ Residual connection reduces error by factor of 2 (GT vs GRT)
e GRU further reduces error by factor of 1.2 (GRT vs GRT-GRU)
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Experiments: Results

Results after rolling out to 24 hours/steps

500 hPa V Wind [m/s] 500 hPa V Wind [m/s]
time: 2018-06-01T23Z, step 024 time: 2018 06- 01T23Z step 024
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Link to video

Experiments: Rolled out to 40 steps

500 hPa V Wind [m/s]

500 hPa Air temperature [ *K]
ti 2018-06-01T00Z, step: 001

500 hPa Specific humidity [kg/kg]
time: 2018-06-01T00Z, step: 001

500 hPa U Wind [m/s]
time: 2018-06-01T00Z, step: 001

500 hPa Geopotential Height [km]
time: 2018-06-01T00Z, step: 001
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Conclusion

® Proposed Graph Residual Transformer + GRU for weather prediction
* Relatively small model (~ 3 M parameters).
* Trained only on the next 3 steps (auto-regression), can roll out up to 40.
® Residual connection in state space reduces error by a factor of 2.
® GRU reduces error even further by factor of 1.2

e Future work

* |nvestigate diverse gridding of the globe
® Explore larger model (trained with fully shared data parallel)
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Edge distribution
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® (0°-30°N/S: keep radius distance at lat _
Same radius at all latitudes e 30°-60°N/S: 1/2 radius Tistance at equator < radius

® 60°-90° N/S: 1/4 radius
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Edge distribution
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Edge distribution

Bandes at the poles, likely due to insufficient graph connections.

500 hPa V Wind [m/s]
time: 2018-06-08T23Z, step: 191
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Experiments: Anomaly Correlation Coefficient (ACC)

Correlation between the forecast anomaly and the verifying analysis anomaly with respect
to the climatology.

acc= L Lijwilxij — ciy) (Rij — ciy)

N \/ZiJWj(xij - CiJ)Z\/ZiJWj(fciJ —cij)?

* w;: latitude-based weight

;- true variables at lat j and lon i

® %;;: predicted variables at lat j and lon i
;- climatology at lat j and lon i

® X

® ¢
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More evaluation metrics: ACC and RMSE

ACC_Z500 (year 2018) ACC_Z500 (year 2020)
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Mean (solid line) and standard deviation (shade) with first day of every month of 2018 (left) and
2020 (right) as initial condition.
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Results for year 2022

ACC_Z500 (year 2022) RMSE_Z500 (year 2022)
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Mean (solid line) and standard deviation (shade) with first day of every month of 2022 as initial
condition.
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Hybrid Sigma-pressure Coordinate

Source:
https://www2.cesm.ucar.edu/models/atm-
cam/docs/usersguide/node25.html
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