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Hydrology Forecasting

Predicting the behavior of water systems
Hurricanes
e Tropical storms, 75 mph to > 150 mph
e 2.5 trillion gallons of rain per day

° Flood rivers and lakes

e Damage to life and property

A family walking through a flooded street in Batabano, Cuba, on September 27, 2022,
during the passage of hurricane lan [Y. Lage, AFP]

Hurricane lan: 150 deaths, > $112 billion in damages

== A vehicle sits partially submerged in a flooded downtown following Hurricane lan, in Orlando,
—o.. Florida, September 29, 2022. [Gary Bogdon, EPA-EFE]
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WRF-Hydro' Modeling System

e An open source community model
e Understand and predict water system behaviors
e Address issues relating to water availability, quality and hazards

e Used for forecasting floods during hurricanes lan and Florence

National
Water Model

"\Al
. WRF-Hydro

CONUS for 2019-20 water year 1 - https://ral.ucar.edu/projects/wrf_hydro
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What is Ensemble Data Assimilation Forecasting?

A sequential approach combining multiple sources of information about a system,
with a model of the system to estimate the dynamical state of the system
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Why is ensemble forecasting challenging?

e Huge number of data points to be processed
o  High dimensional models
o  Large number of observations

o  Data Assimilation Research Testbed (DART)' to the rescue!

NCAR |DART

1 - https://dart.ucar.edu/
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Why is ensemble forecasting challenging?

e Sources of uncertainty
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Why is ensemble forecasting challenging?

e Huge number of data points to be processed

o  High dimensional models

o  Large number of observations

o  Data Assimilation Research Testbed (DART)' to the rescue!
e  Multiple sources of uncertainty

e  Highly critical when used with context

NCAR |DART

1 - https://dart.ucar.edu/
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How do interactive visualization dashboards help?

e Make fast and reliable data driven decisions
e Interactivity < 500 ms response time
e For ensemble data assimilation forecasts
o Inspect different forecasted variables
o Understand the uncertainty in the forecasts
o Investigate the performance of selective models in the ensemble
o Investigate the performance of data assimilation process

o  Understand contextual significance of the forecasts
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NCAR DART
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http://localhost:8000/
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https://docs.google.com/file/d/1uGcZJwkQBJtx9sPTjOHyFe8G9RJRRwXW/preview
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https://docs.google.com/file/d/1s96EJjW1rbuuz3T3_zH1e2YPY85jM9Q7/preview
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https://docs.google.com/file/d/1JQtaE3Y21-x2W6G23jc8lvpXosmPGd71/preview
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https://docs.google.com/file/d/1iT-CnWEzWBv0-2mQYHK8LOXxHsD849Bl/preview

How is HydroVis designed?
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Future Work
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Future Work
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Future Work

Visualization changes

e Open loop data to gauge the efficacy of data assimilation

e Uncertainty visualization constructs

o  hypothetical outcome plots
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