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Introduction and Motivation

• An estimated 1.4 million accidents, 600,000 injuries, and 7,000 deaths 
occur each year due to dangerous conditions caused by winter 
precipitation on roadways

• It is difficult to predict winter weather with spatiotemporal consistency
• We want to leverage machine learning techniques to accurately 

predict precipitation types in winter weather events

Background |   Data |   Methods |   Results |    Conclusions



Precipitation Types
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Rain

Freezing RainIce Pellets (sleet)

Snow

all other images from https://www.weather.gov/jetstream/preciptypes

https://www.farmersalmanac.com/frozen-precipitation-defined-23431



Datasets

Input Data:
• RAP: temperature, dew point temperature, east/west wind velocity, and 

north/south wind velocity values at various heights in the atmosphere

Output Data (observations):
• ASOS: system of automated weather reporting stations across the U.S. which 

report precipitation type
• mPING: mobile application where users can submit weather reports, 

including precipitation type
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Machine Learning Process

Background |   Data |   Methods |   Results |    Conclusions

Data Collection Data 
Processing

Hyperparameter 
Optimization

AI/ML Model 
Development

Analyze 
Results

Final Model

Analyze 
Results

I will focus on this section of 
the workflow in the remainder 
of the presentation



Hyperparameter Optimization Overview
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● Process to fine tune the manually set parameters of the model (hyperparameters) to 
maximize or minimize an evaluation metric

● Conducted using the Earth Computing Hyperparameter Optimization (ECHO) package, a 
custom package developed within the NCAR AIML group 

● Goal: maximize the average accuracy of the model



Hyperparameter Optimization Results
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…Input: RAP 
Data (268 
total features)

n hidden layers

Output: p-type 
label (argmax of the 
predicted 
probabilities)

ASOS:

Number of hidden layers: 6
Hidden layer size: 534

Activation function: ELU
Output activation function: softmax
Loss function: categorical cross-entropy

mPING:

Number of hidden layers: 12
Hidden layer size: 105

Activation function: Leaky RELU
Output activation function: softmax
Loss function: categorical cross-entropy



ASOS Confusion Matrices
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Rain accuracy: 94%                      Snow accuracy: 87%
Ice Pellets accuracy: 57%             Freezing Rain accuracy: 82% 



mPING Confusion Matrices

Rain accuracy: 87%                      Snow accuracy: 75%
Ice Pellets accuracy: 58%             Freezing Rain accuracy: 61% 
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ASOS Reliability Diagram
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● Expected calibration error (ECE): 
weighted sum of the deviation of 
accuracy from the diagonal line

● Indicates whether the model is 
overconfident, underconfident, or 
calibrated

● The model has a low ECE and 
the average confidence is nearly 
equal to the accuracy (red oval)

● These results suggest the model 
is calibrated

calibrated

overconfident

underconfident



mPING Reliability Diagram

● mPING model had a higher ECE than 
the ASOS model therefore it was less 
calibrated

● The model tended to be 
underconfident (average confidence 
less than accuracy)
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ASOS Ice Pellets Reliability Diagram 

Background |   Data |   Methods |   Results |    Conclusions

● Rain, snow, and freezing rain had 
patterns similar to the overall diagram 

● Ice pellets become extremely 
overconfident at high confidences, a 
concerning trend

● This trend may be caused by biases 
in the data

● 85% of ASOS stations cannot report 
ice pellets



mPING Ice Pellets Reliability Diagram

Background |   Data |   Methods |   Results |    Conclusions

● Rain, snow, and freezing rain again 
had similar patterns to the overall 
diagram

● Ice pellets again become extremely 
overconfident at high confidences

● This trend could be caused by 
incorrect labels in the mPING 
dataset

● Burg et al. demonstrated that RAP 
underforcasts ice pellets compared 
to observations



mPING Case Study: True Labels vs. Predicted Labels
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True Labels Predicted Labels

● The mPING model got the spatial distribution of the p-types roughly correct
● There is an overprediction of ice pellets and freezing rain at the expense of 

rain and snow in this case
● The ASOS model had similar results



mPING Case Study: Confidences
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● The least confident predictions tend to be where freezing rain, ice pellets, or snow 
occurred

● In the ASOS model, the least confident predictions occurred in areas of freezing 
rain and ice pellets



Conclusions/Future Work
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Conclusions
• Both models captured spatial distributions well, especially for rain 

and snow

• Both models were unable to predict ice pellets

• The ASOS model was more calibrated than the mPING model, 
with the exception of ice pellets

Future Work
• Continue model development and hyperparameter optimization on 

a neural network that can predict its own evidential uncertainty

• Explore other model structures such as a convolutional neural 
network 
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