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Introduction and Motivation

Objective 2
Difficult to predict ice and freezing rain due to 
biased observations and imbalanced data →
Evidential Active Learning to…
• Increase data efficiency
• Improve performance for difficult labels
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Task
Predict winter weather precipitation type (p -type)
using deep learning with high spatiotemporal 
accuracy and consistency

Figure 1: Aftermath of Tennessee ice storm, February 2022

Objective 1
Difficult to interpret “black -box” deep learning 
models → Explore Explainable AI (XAI) to…
• verify physical consistency of predictions
• motivate further research
• facilitate stakeholder communication
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Figure 2: 3D visualization of RAP wind velocity, relative humidity, 
and reflectivity variables



Data Sources: Outputs
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ASOS: 852 fixed automated p -type monitors → Only 15% report ice

mPING: Crowd-sourced p-type observation → Under -reports freezing rain

OUTPUT 
DATA

Figure 3: ASOS observations and RAP Temperature, Pressure, Wind Velocity Data for February 2021 NA Winter StormFigure 3: ASOS observations and RAP Temperature, Pressure, Wind Velocity Data for February 2021 NA Winter Storm



Data Sources: Outputs
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RAP (Rapid Refresh): Numerical weather model by NCEP (National 
Centers for Environmental Prediction) → grid cell over each p-type obs.
→ Temperature, Dewpoint, Wind Velocity from 0m to 16500m in atmosphere

INPUT 
DATA

Figure 3: ASOS observations and RAP Temperature, Pressure, Wind Velocity Data for February 2021 NA Winter Storm



Neural Networks: Overview
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0m

P(Rain)

P(Snow)

P(Ice)

P(Freezing Rain)

Model Loss Function Hidden 
Layers

Nodes 
per Layer

Simple MLP Cross Entropy 1 100

ECHO-Optimized MLP 
(ECHOMLP) Cross Entropy 12 105

Simple Evidential MLP 
(EvidMLP)

Evidential 
Digamma 1 100

Amount of Uncertainty 
for Prediction ~ [0, 1]:
0 = Lowest Certainty

1 = Greatest Certainty
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mPING Test Accuracies
Rain Snow Ice FzRain

94% 92% 41% 28%

88% 75% 65% 59%

94% 90% 17% 6%



Explainable AI (XAI): Introduction

Which input features are important for accurately 
predicting p -type?
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Explainable AI (XAI): Introduction

Which input features are important for accurately 
predicting p -type?
→ Permutation Importance

• Calculate change in prediction accuracy from original 
model after randomly shuffling each input feature one-
by-one

• Conducted on mPING Simple MLP

Background |   XAI |   Active Learning |   Conclus ions

Figure 4: Illus tration of Backwards  Pass  
Permutation Importance
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How does  the neural network use input features  to 
compute p-type predictions?

Figure 4: Illus tration of Backwards  Pass  
Permutation Importance

6

Figure 5: SHAP Example for Image 
Class ification. Red = Pos itive Contribution, 
Blue = Negative Contribution.



Explainable AI (XAI): Introduction

Which input features are important for accurately 
predicting p -type?
→ Permutation Importance

• Calculate change in prediction accuracy from original 
model after randomly shuffling each input feature one-
by-one

• Conducted on mPING Simple MLP
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How does  the neural network use input features  to 
compute p-type predictions?
→ SHAP (SHapley Additive exPlanations)

• Computes  contribution of each feature towards  each 
model prediction

• More detailed interpretation of model than Permutation 
Importance

• Conducted on mPING Simple MLP, mPING 
ECHOMLP , and ASOS and mPING Simple EvidMLP
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Figure 4: Illus tration of Backwards  Pass  
Permutation Importance

Figure 5: SHAP Example for Image 
Class ification. Red = Pos itive Contribution, 
Blue = Negative Contribution.



XAI Results | mPING Simple MLP
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Variables at lower elevations 
most important.

Temperature most important.



XAI: SHAP Results | mPING ECHO -Optimized MLP
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High importance for 
Temperature and Dewpoint 
near tropopause.



XAI: SHAP Results | mPING Evidential MLP | P -Type
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High importance for all 
feature types near 
tropopause.

Variables near tropopause 
most important for 
predicting snow.



XAI: Conclusions
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Conclusions

• Simple MLP learned high importance near surface
• Complex ECHOMLP and simple EvidMLP learned high importance near 

surface and near tropopause
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Future Work

• Conduct SHAP analysis for ECHO-optimized EvidMLP
• Investigate important variables near tropopause
• XAI methods for clusters of highly correlated variables

Next Section: Active Learning

Significance
Neural networks learn physical patterns in atmospheric data  
→ Enables intuitive understanding of complex models by stakeholders



Active Learning: Motivation
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Figure 46 Active Learning example with binary 
classification

Regular Training: 
Sample Inefficient

Active Learning: 
Sample Efficient

How to determine points near 
decision boundary?

Uncertainty from EvidMLP!
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Active Learning: Method
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Active Learning: Method
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Active Learning Experiments (% of Full)

Initial Data Active Data

ASOS (10%) ASOS (90%)

ASOS (100%) mPING (100%)

mPING (10%) mPING (90%)
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Active Learning: Results | ASOS on mPING
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Active Learning: Results | ASOS on mPING
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Snow Accuracy reached 
88% after adding 70% of 
mPING data

Ice Accuracy improved 
from 0% to 13% after 
adding 30% of mPING data



Active Learning: Results | mPING on mPING
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Active Learning: Results | mPING on mPING
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Snow Accuracy reached 
88% after adding 50% of 
mPING data

Ice Accuracy improved 
from 17% to 47% after 
adding 10% of mPING data

Freezing Rain Accuracy 
improved from 0% to 13% after 
adding 10% of mPING data



Active Learning: Conclusions
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Conclusions
• Able to improve accuracy for most difficult labels while 

maintaining performance for other labels
– Snow, Ice, Freezing Rain accuracy peaks with 20-50% of 

full dataset 
– Rain performance remains adequate
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Future Work
• Conduct ensemble experiments to verify Active Learning 

results and obtain baseline for comparison
• Incorporate unlabeled data and hand -labeling into Active 

Learning pipeline
• Conduct XAI at each Active Learning Iteration → Do feature 

importances change?

Significance 
Accurate p-type prediction with simple models and a 
fraction of full training data
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Questions and Feedback?

Double rainbow while biking down NCAR hill last week!
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Higher wind velocity associated with lower SHAP 
values → Greater Certainty of p -type prediction!
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Higher upper troposphere temperature associated with 
larger SHAP values → Lower Certainty of p -type prediction!



Appendix: Active Learning

33


	Slide Number 1
	Slide Number 2
	Introduction and Motivation
	Data Sources: Outputs
	Data Sources: Outputs
	Neural Networks: Overview
	Explainable AI (XAI): Introduction
	Explainable AI (XAI): Introduction
	Explainable AI (XAI): Introduction
	Explainable AI (XAI): Introduction
	XAI Results | mPING Simple MLP
	XAI: SHAP Results | mPING ECHO-Optimized MLP
	XAI: SHAP Results | mPING Evidential MLP | P-Type
	XAI: Conclusions
	Active Learning: Motivation
	Active Learning: Method
	Active Learning: Method
	Active Learning: Method
	Active Learning: Method
	Active Learning: Method
	Active Learning: Results | ASOS on mPING
	Active Learning: Results | ASOS on mPING
	Active Learning: Results | mPING on mPING
	Active Learning: Results | mPING on mPING
	Active Learning: Conclusions
	Acknowledgements
	References
	Appendix: XAI
	Appendix: XAI
	Appendix: XAI
	Appendix: XAI
	Appendix: XAI
	Appendix: Active Learning

