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 XAI and Active Learning for Predicting Winter Weather Precipitation Type

Motivation

● Winter precipitation causes 1.4 million accidents 
per year, $4.1 billion in damages per storm

● Accurate observation and prediction of winter 
precipitation is difficult

● Neural Networks are powerful but hard to interpret

BACKGROUND
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Goal

● Train deep learning models to predict winter p-type 
and interpret using Explainable AI (XAI) methods

● Implement Evidential Active Learning to improve 
model performance and data efficiency

NEURAL NETWORK

Input

● RAP (Rapid Refresh) model
● Temperature, Dewpoint, Wind 

Velocity at 250m intervals in 
atmospheric column 

Output

● Rain/Snow/Sleet/Freezing 
Rain Observations

● mPING → Crowd-Sourced
● ASOS → Fixed Monitors

MODEL AND RESULTS
mPING Test Accuracies

Rain Snow Ice FzRain
94% 92% 41% 28%

88% 75% 65% 59%

94% 90% 17% 6%

Model Loss Function Hidden Layers Nodes per Layer

Simple MLP Cross Entropy 1 100

ECHO-Optimized MLP (ECHOMLP) Cross Entropy 12 105

Simple Evidential MLP (EvidMLP) Evidential Digamma 1 100

EXPLAINABLE AI (XAI)

mPING on mPING

CONCLUSIONSACTIVE LEARNINGRegular Training: 
Sample Inefficient

Active Learning: 
Sample Efficient

How to determine points near 
decision boundary?

Uncertainty from EvidMLP!

METHODS AND RESULTS
● Iterative training on uncertain training examples using Evidential MLP
● Model able to learn decision boundary with less training examples

Initial Data Active Data
mPING (10%) mPING (90%)

Initial Data Active Data
ASOS (100%) mPING (100%)

METHODS AND RESULTS
Permutation Importance: Change in prediction accuracy from 
original model after randomly shuffling each input feature one-by-one

SHAP (SHapley Additive exPlanations): Computes contribution of 
each feature towards each model prediction

Evidential MLP SHAP

ASOS on mPING

FUTURE WORK

Explainable AI

● Simple MLP learned important features at lower 
elevations in atmospheric column

● Evidential MLP learned important features at 
lower elevations and near tropopause

Active Learning

● Sleet accuracy improves significantly over 
baseline with just the most uncertain 20% of full 
dataset added

● Able to improve accuracy for most difficult labels 
while maintaining performance for other labels

Active Learning

● Compute baselines for comparison
● Use Model Ensembles and Dropout Sampling in 

addition to Evidential Uncertainty

Analysis

● Apply model to RAP grids across US, beyond 
mPING and ASOS observation points

● Implement model architectures with 
spatiotemporal components (CNN, RNN, etc.)

● Analyze consistency with physical knowledge

SimpleMLP PermImp
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