
Python Visualization, Analysis, and Jupyter Notebook
Development for Unstructured Data

Philip Chmielowiec1,2, Orhan Eroglu1, Alea Kootz1, Anissa Zacharias1, Michaela Sizemore1
1 National Center for Atmospheric Research
2 University of Illinois at Urbana-Champaign

Performance

Workflow

Abstract
Background
The most widely-used approach for visualizing unstructured data
is by rendering the triangular mesh produced by running Delaunay
Triangulation on our set of points. This method is computationally
expensive and produces an approximation of our mesh. Modern
unstructured meshes often come with connectivity information in
the form of face nodes, which Delaunay does not utilize.

Methods
By utilizing the face node connectivity information, we are able to
construct a mesh of polygons that is suitable for rendering with
libraries such as Datashader.

Results
This implementation produces results that showcase the true struc-
ture of our mesh. The overall performance compared to Delaunay
Triangulation is around 3-4x faster. Rendering with Datashader
allows for us to visualize millions of polygons in under a few seconds.

Conclusion
Visualizing our unstructured data as a mesh of polygons offers
significant performance and visual improvements. The main bottle
neck is converting our raw data to polygons in Python, which is
an active area of development in the computational geometry
community (Shapely 2.0)

Visualizations

Core Packages
Data Mesh Representation Visualization

Mesh Construction

Unstructured Meshes

Rasterization
Non-Rasterized Rasterized

Cyclic Polygon Correction
Before After

1. Initial Polygon Array
- Node Coordinates are indexed using Face Node values
- Polygon: [x1, y1, x2, y2, x3, y3,, xn, yn], where n = nface_nodes
- Total # of Polygons = Total # of Faces

2. Cyclic Polygon Search
- Locate any polygons that wrap around the globe
- Check longitude values (crossing between ± 180)
- Store indices

3. Convert to GeoDataFrame
- Initial Polygon Array converted to Polygon Objects through pyGEOS
- Loaded into a Spatial Pandas GeoDataFrame as “geometry”

4. Face Value Calculation
- Face Node Mean or Direct Face Value
- Loaded into our GeoDataFrame as “faces”

5. Removing Cyclic Polygons
- Mask Cyclic Polygons using stored indices

Future
 Performance Improvements- pyGEOS + Shapely 2.0 merger
- Faster Polygon Calculations
- Improved render with Datashader

