Improving the Speed and Scalability

of the Data Assimilation Research
Testbed

Jiachen (Ed) Liu
NCAR Drexel University
UCAR Mentors: Helen Kershaw, Jeffrey Anderson

Data assimilation is a process to combine model outputs and
observations to improve model forecasts

Example: a temperature forecast Analysis
» Model forecast: a three dimensional \’
atmospheric model which computes Model
the temperature Forecasts
(Updated
» Observations: observed temperature ——> Model
with a thermometer at a given time Assimilation L Forecasts
Observations

 Assimilation: Generate the
statistically optimal value based on
the forecast and the observation

The Data Assimilation Research Testbed (DART) helps
researchers perform ensemble data assimilation

Ensemble data assimilation process
can capture the uncertainties inherent
to model forecasts and observations.

DART provides a platform for flexible
and powerful ways to perform
ensemble data assimilation with
different models.

3 ensemble members advancing in time

analysis prior

tk///_>
- i1

%
*
'H'-.______________,.-'

Ensemble DA with DART

Improving speed and scalability of DART is important for the
future

« Although there are modules to utilize parallel computing resources to run DART,
it is still computationally expensive.

« The focus of this work is to:
1. ldentify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic changes

The speed and scalability of DART with various models are
important for the future

1. ldentify the computational barriers in DART with code profiling tools

The identification of computational barriers in DART
is essential for the future

« Example code profiling result with arm -forge MAP tool of DART arm

18 call initialize mpi utilities('Filter’)

050+ I 20 call filter main()

1.9% I 22 call finalize mpi_utilities()

24 end program filter

Input/Output Project Files Main Thread Stacks
x & Main Thread Stacks
Total core time ~ | MPI | Function(s) on line | Source
¥ % filter [program]
v / filter program filter
¥ filter_mod::filter_main call filter main()

v assim_tools_mod::filter assim E filter_assim(state_ens_handle, obs_fwd op_ens_handle, seq, keys, &

> get_close_state_cached [inlined] E get _state_cached(gc_state, base obs_lec, base_obs_type, &
[3 2 broadcast_recvimap_pe to_ task(ens handle, owner), obs _prior, &
» assim_tools_mod::obs_updates_ens call obs_updates_ens (ens_size, num_groups, ens_handle%copies(l:ens_size, state_ index), &
» BB others
» forward_operator mod::get_obs_ens... E get_obs_ens_distrib_state(state_ens_handle, obs_fwd op_ens_handle, &
b filter_mod::obs_space_diagnostics E obs_space_diagnostics(cbs fwd_op_ens_handle, gc_ens_handle, ens_size, &
» state_vector_io_mod::read_state £ read state(state ens _handle, file info input, read time from file, timel, &
» 20 others

<01 [-0 » 17 others

finalize mpi utilities()

Initial profiling results of DART show that it generally scale
well with increased computational resources

* Finite Volume Community Atmosphere Model (CAM-FV) test case

of nodes # of processors Runtime from MAP [s] (filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)
2 36 2401.83 70 26.2 3.8
4 36 1071.377 445 471 84
8 36 658.034 24.5 61.8 13.6
10 36 339.992 39.2 341 26.6
20 36 285.397 25.8 415 32.7
10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20

Initial profiling results of DART show that it generally scale
well with increased computational resources

* In general, increased number of nodes and/or number of processors per
node decrease the total runtime.

* However, as the number of nodes is relatively high, the effect of increasing
number of nodes on total runtime reduction decreases.

of nodes # of processors Runtime from MAP [s] (filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)
2 36 2401.83 70 26.2 3.8
4 36 1071.377 445 471 84
8 36 658.034 24.5 61.8 13.6
10 36 339.992 39.2 341 26.6
20 36 285.397 25.8 415 32.7
10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

» Atmospheric component of the Model for Prediction Across Scales (MPAS -
ATM)

call get_close_state(gc_state, base_obs_loc, base_obs_type, &
my state loc, my state kind, my state indx, &
num_close_states, close_state_ind, close_state Vector floating point

Scalar floating-point

last_base_states_loc base_obs_loc Scalar integer

i last num close stjates num close s?ates Vector integer
9.1% last close state ind(:) close state ind(:)
29.6% last close state dist(:) close state dist(:) Memory access*

v 2 L] TIO_CIOSE_states_calIs_made T_Close_states_ctalls_made +1 B h
2662 endif Lt
2663 endif Other instructions
2664

end subroutine get_close_state_cached * 97.1% memory access instructions,1.4% implicit memory

accesses in other instructions,also counte their

Input/Outpu Project Files Main Thread Stacks Funct
Thread Stacks
Total core time ~ | MPI | Function(s) on line | Source | Position
~ % filter [program]
v A filter program filter filter.f90:9
filter _mo ter _main call filter main() filter.f90:20
~ assim_tools_meod::filter _assim call filter assim(state_ens_handle, obs_fwd op_ens filter _mod.f90:918
v get_close_state_cached [inlined] call get_close_state_cached (gc_state, base obs_loc, assim_tools_mod.f90:698
last_close_state_dist(:) = se_state_dist(:) assim_tools_mod.f90:2660
> model_mod::get_close_state call get_close_state(ge_state, base_obs_lec, b assim_tools_mod.f90:2653
last_close_state_ind(:) = close_state ind(:) assim_tools_mod.f90:2659

» 2 others

call broadcast_recv(map_pe_to_task(ens_handle, owner.. assim_tools_mod f90:634

> assim_tools_mod::obs_updates_ens call obs_updates_ens (ens_size, num groups, ens_handl.. assim_tools_mod.f90:718

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

2659 last close state ind(:) close state ind(:)
29. 6% 2660 last close state dist(:) close state dist (:)

» The purpose of this subroutine is to cache the location and indices of the
previous observation so that we can reduce computation time.

« However, these two lines of copying actually consume almost 40% of the
total runtime of DART for this case!

« It turns out that we don’t need these two lines of code to perform the
caching. These are redundant copying of very large arrays.

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

2659 last close state ind(:) close state ind(:)
2660 last close state dist(:) close state dist (:)

« Initial testing with this test case shows that without calling the subroutines,
the computation time reduced from 260 seconds to 64 seconds

 The problem is now resolved with a pull request at
https://github.com/NCAR/DART/pull/368

The speed and scalability of DART with various models are
important for the future

2. Improve the speed and scalability of DART through algorithmic
changes

A high -resolution assimilation run of MIT General Circulation
Model for the red sea is a computational problem for DART

[BN] [X| OUTPUT.ne

« The MIT General Circulation Model for \/
the ocean (MITgcm-ocean) is a
numerical model that can compute
parameters related to the ocean.

» This specific run is on a 2000x2000x50
(latitude, longitude, depth) grid.

« DART cannot be run on Cheyenne or on
the extreme memory nodes (4 TB) at
Pittsburgh Supercomputing Center for
this specific case.

Sample output from MITgcm -ocean for the f'ed sea

12

A high -resolution assimilation run of MIT General Circulation
Model for the red sea is a computational problem for DART

0@ [X| OUTPUT.ne
« Memory overflow is likely the \/
problem.
Egypt
« The grid has land which is not used in Saudi Arabia
the data assimilation process.
* In the state file, these values are
Sudan

usually 7/l values.

* Analysis shows 92% ofthe grid are fill
values.

Sample output from MITgcm-ocean for the red sea

13

DART handles the state information by generatinga1 -D
DART vector

L

Size = Nyg X Nig X Ny X Ndepth

.08 &7.. O

« The state might have several variables (salinity, temperature, nitrate
concentration, etc.)

« DART reduces everything into a 1-D DART vector and performs data
assimilation.

« The missing values (land cells in an ocean model) stay in the vector.

The squished state approach can significantly reduce the
size of the state vector

r—-——=—=—====== [
| |
I ... 7 |
/ I I
Squish out all : - - :
missing values
NOs e -0 1 Newmnput File
Record dimension | ﬁ 5 I
information | Lat e I
: Lon ﬁ ﬁ :
I Depth (... (] I
| |
10.4 GB 988 MB

« The new input file does not have missing values at all.
« Additional dimension information is required because we squished the grid.

The squished state approach can significantly reduce the
size of the state vector

F=—"——======- !

i 9.6

: _ B : Size = % useful x Ny, X Ny X Nygy X Nigepn
: ... 7 | R f N \

o .8 ... &9..

: n (... & :

: Depth (... (] :

« If %useful is small, the size of the state vector can be reduced significantly,
so the assimilation might be able to run

The squished state approach can significantly reduce the
size of the state vector

Size = Nvar X Nlat X Nlon X Ndepth

A

7 1 i .. &

1 — 0
Size = % useful X Ny, X Ny X Nygy X N

-

« The DART model size (number of variables)decreased from ~2.63e9 to
~2.0e8.

The squished state approach improves the speed and
scalability of DART™

Medium Case Large Case
(500x500x50) (2000x2000x50)
Original 361s N/A
Squished State 150s 1500s

« The computation time for the medium case decreased from 361 seconds to
150 seconds.
» The large case now runs properly.

« The squishing process can be done fairly easily without significant additional
computational resources.

Future Work

» Make the squishing process “online” with DART

— The users only need to specify if they want to use the squished state
method.

» Write subroutines which reformulate the squished DART array back into its
original form.

Acknowledgements

| would like to thank my mentors Helen and Jeff for their advice throughout the
summer. | also want to thank the DAReS team, the CODE team, and CISL help
desk for their support.

	Slide Number 1
	Data assimilation is a process to combine model outputs and observations to improve model forecasts
	The Data Assimilation Research Testbed (DART) helps researchers perform ensemble data assimilation
	Improving speed and scalability of DART is important for the future
	The speed and scalability of DART with various models are important for the future
	The identification of computational barriers in DART is essential for the future
	Initial profiling results of DART show that it generally scale well with increased computational resources
	Initial profiling results of DART show that it generally scale well with increased computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	The speed and scalability of DART with various models are important for the future
	A high-resolution assimilation run of MIT General Circulation Model for the red sea is a computational problem for DART
	A high-resolution assimilation run of MIT General Circulation Model for the red sea is a computational problem for DART
	DART handles the state information by generating a 1-D DART vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach improves the speed and scalability of DART*
	Future Work
	Acknowledgements

