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● The project’s focus in on porting CPU parallelized routines, i.e., meteorology.py and crop.py. 
● Arrays and multidimensional arrays in the GeoCAT routine are either NumPy or Xarray. Some 

routines used Dask for parallelizing Xarray arrays on the CPU. 

Implementation

GPU Programming in Python

GeoCAT

CPU cores have a fast clock cycle but a limited number of 
cores. GPUs have hundreds of cores. By using GPUs in 
computations where a task can be divided into many 
subtasks, we can take advantage of massive 
parallelization and accelerate the code.

There are different CUDA-enabled packages in Python to 
help optimizing programs by GPUs, e.g., Numba, 
Pycuda, and CuPy. We investigated different 
approaches, and chose CuPy. CuPy is very similar to 
NumPy and it can be used as a drop-in replacement 
with NumPy. 

With CuPy the programmer is not required to do 
memory management on both host and device or set 
and launch kernels manually. 

Xarray: Enables having labelled multi-dimensional 
arrays in Python. 

Dask: Flexible open-source Python library for parallel 
computing.

Challenges 

Conclusion and Future Work

Scalability: Strong and Weak Scaling

Performance Results

Geoscience Community Analysis 
Toolkit (GeoCAT) is a toolkit used 
by the geoscience community to 
analyze and visualize data. 

GeoCAT-comp program is one of the GeoCAT 
repositories, including previous NCL’s non-WRF 
computational routines and other geoscientific analysis 
functions in Python. 

• GeoCAT-comp is built on Pangeo software 
ecosystem. The routines in GeoCAT-comp 
are either sequential or take advantage of 
Dask for parallelization on the CPU. 

Data processing and data analysis is an embarrassingly 
parallel task and computationally intensive. 

The project’s focus is on porting GeoCAT-comp routines 
to GPUs. 

g_array = 
cupy.asarray(c_array)

g_array = xarray.DataArray(
c_array.data.map_blocks(
cupy.asarray))

g_array = xarray.DataArray(
cupy.asarray(c_array.data))

Existing Infrastructure:

● Adapting Xarray and Dask with CuPy

● Inability to get performance improvements with some 
GPU tasks, e.g., Search functions: xarray.where().

● Numba JIT compiler auto-parallelizes NumPy arrays on 
CPU, but it is not adapted to CuPy arrays

● Correct way for benchmarking and gathering data:
○ Setting the correct chunksize

GeoCAT Github:Ported Branch:
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● Explored ways to port GeoCAT-comp to run on GPUs, 
as recent supercomputers are shifting to include GPU 
accelerators as the major resource. 

● Ported CPU parallelized routines to GPU.
● Validated output results with the precision of 10-7

.

Future Work:
➔ Port all the routines. 
➔ Push to production.
➔ Investigate writing kernel functions with CuPy’s 

user-defined kernel capabilities or Numba and 
PyCuda.
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Performance Comparison (Only Computation Time for GPUs):

Experimental Setup
GPU nodes: 
2 18-core 2.3-GHz Intel Xeon Gold 6140 (Skylake) 
processors per node
8 NVIDIA Tesla V100 32GB SXM2 GPUs with NVLink
CPU nodes: 
Dual-socket nodes, 18 cores per socket
2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors
16 flops per clock


