
Template ID: contemplativecloud Size: 48x36

Exploring Performance of GeoCAT data analysis routines on GPUs
Haniye Kashgarani

University of Wyoming
National Center for Atmospheric Research

● The project’s focus in on porting CPU parallelized routines, i.e., meteorology.py and crop.py.
● Arrays and multidimensional arrays in the GeoCAT routine are either NumPy or Xarray. Some

routines used Dask for parallelizing Xarray arrays on the CPU.

Implementation

GPU Programming in Python

GeoCAT

CPU cores have a fast clock cycle but a limited number of
cores. GPUs have hundreds of cores. By using GPUs in
computations where a task can be divided into many
subtasks, we can take advantage of massive
parallelization and accelerate the code.

There are different CUDA-enabled packages in Python to
help optimizing programs by GPUs, e.g., Numba,
Pycuda, and CuPy. We investigated different
approaches, and chose CuPy. CuPy is very similar to
NumPy and it can be used as a drop-in replacement
with NumPy.

With CuPy the programmer is not required to do
memory management on both host and device or set
and launch kernels manually.

Xarray: Enables having labelled multi-dimensional
arrays in Python.

Dask: Flexible open-source Python library for parallel
computing.

Challenges

Conclusion and Future Work

Scalability: Strong and Weak Scaling

Performance Results

Geoscience Community Analysis
Toolkit (GeoCAT) is a toolkit used
by the geoscience community to
analyze and visualize data.

GeoCAT-comp program is one of the GeoCAT
repositories, including previous NCL’s non-WRF
computational routines and other geoscientific analysis
functions in Python.

• GeoCAT-comp is built on Pangeo software
ecosystem. The routines in GeoCAT-comp
are either sequential or take advantage of
Dask for parallelization on the CPU.

Data processing and data analysis is an embarrassingly
parallel task and computationally intensive.

The project’s focus is on porting GeoCAT-comp routines
to GPUs.

g_array =
cupy.asarray(c_array)

g_array = xarray.DataArray(
c_array.data.map_blocks(
cupy.asarray))

g_array = xarray.DataArray(
cupy.asarray(c_array.data))

Existing Infrastructure:

● Adapting Xarray and Dask with CuPy

● Inability to get performance improvements with some
GPU tasks, e.g., Search functions: xarray.where().

● Numba JIT compiler auto-parallelizes NumPy arrays on
CPU, but it is not adapted to CuPy arrays

● Correct way for benchmarking and gathering data:
○ Setting the correct chunksize

GeoCAT Github:Ported Branch:

Acknowledgement
Thanks to Cena Miller, Supreeth Suresh, and Anissa
Zacharias for their mentorship.
Special thanks to ASAP, GeoCAT, CSG, and SIParCS Team!

● Explored ways to port GeoCAT-comp to run on GPUs,
as recent supercomputers are shifting to include GPU
accelerators as the major resource.

● Ported CPU parallelized routines to GPU.
● Validated output results with the precision of 10-7

.

Future Work:
➔ Port all the routines.
➔ Push to production.
➔ Investigate writing kernel functions with CuPy’s

user-defined kernel capabilities or Numba and
PyCuda.

hkashgar@uwyo.edu

Performance Comparison (Only Computation Time for GPUs):

Experimental Setup
GPU nodes:
2 18-core 2.3-GHz Intel Xeon Gold 6140 (Skylake)
processors per node
8 NVIDIA Tesla V100 32GB SXM2 GPUs with NVLink
CPU nodes:
Dual-socket nodes, 18 cores per socket
2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors
16 flops per clock

