
Containers augmented with the Spack package
manager can be used to streamline building and
deploying scientific applications, providing
enhanced portability and competitive
performance compared to the bare metal
equivalents on both CPUs and GPUs.

Increasing the portability and reproducibility of a scientific
application using containers and Spack

Background

Containers - achieve lightweight portability

Spack - install packages the way you want

Methods

Hardware

OS bin/library

Hypervisor

OS bin/library

App App

App App Container Runtime
Virtualized
Hardware

bin/library
App App

Traditional Container Virtual Machine (VM)

● Manual deployment of scientific apps on new
systems can be challenging.

● Spack helps by managing complex package
installs while still allowing customization.

● Combining containers and Spack enables both
portable and efficient software builds.

● Samurai, a scientific application that converts
radar data into a wind field, is known to be
particularly challenging to build, making it a good
candidate for a case-study.

Ubuntu
Base

Image

Developer Container
~10 GB

Spack

spack.yaml

oneapi/nvhpc
cmake
netcdf

fftw

lrose
samurai

Ubuntu
Base

Image

runtime libs

samurai exe

Lightweight Container
~200 MB

1. Install compilers and packages in container using Spack
2. Build lrose (dependency) and Samurai in container
3. Make lightweight container
4. Test Samurai on different platforms; compare to bare metal

Results: bare metal vs containerized

$ spack install netcdf-c@4.8.1%nvhpc^hdf5@1.12%gcc

version

compiler

customized
dependencies

Containers bundle applications with a partial operating system.

Mentors: Jian Sun, Brian Vanderwende, John Dennis NCAR

Joe Ammatelli University of Washington | jamma@uw.edu

