
Multi-GPU Programming, Part 2Multi-GPU Programming, Part 2
By: Daniel Howard , Consulting Services
Group, CISL & NCAR

Date: July 14th, 2022

In this notebook we explore the mini-app
 to present techniques and code examples for

implementing and assessing performance of various multi-GPU paradigms. We will cover:

1. Interoperability of OpenACC with MPI and NCCL GPU communication libraries
2. Hands-on implementation of MiniWeather with CUDA aware MPI and NCCL

dhoward@ucar.edu (mailto:dhoward@ucar.edu)

MiniWeather
(https://github.com/mrnorman/miniWeather)

mailto:dhoward@ucar.edu
https://github.com/mrnorman/miniWeather

Head to the and start a
JupyterHub session on Casper login (or batch nodes using 1 CPU, no GPUs) and open the
notebook at 11_MultiGPU/11_multiGPU_Part2.ipynb . Be sure to clone (if needed)

and update/pull the NCAR GPU_workshop directory.

Workshop EtiquetteWorkshop Etiquette
Please mute yourself and turn off video during the session.
Questions may be submitted in the chat and will be answered when appropriate. You
may also raise your hand, unmute, and ask questions during Q&A at the end of the
presentation.
By participating, you are agreeing to

Recordings & other material will be archived & shared publicly.
Feel free to follow up with the GPU workshop team via Slack or submit support
requests to

Office Hours: Asynchronous support via
 or schedule a time with an organizer

NCAR JupyterHub portal (https://jupyterhub.hpc.ucar.edu/stable)

Use the JupyterHub GitHub GUI on the left panel or the below shell commands

git clone git@github.com:NCAR/GPU_workshop.git

git pull

UCAR’s Code of Conduct
(https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants)

rchelp.ucar.edu (https://support.ucar.edu)
Slack

(https://ncargpuusers.slack.com)

https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu/
https://ncargpuusers.slack.com/

Notebook SetupNotebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,

and QUEUE to the appropriate routing queue depending on if during a live workshop

session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other times

(casper).

The GPU_TYPE=gp100 nodes are not configured for multi-GPU computing! Thus, the

gpuworkshop queue is not useful for this session. Saying as much, please set

GPU_TYPE=v100 and use the gpudev both during the workshop and for independent

work. See

 for more info.

Casper queue documentation
(https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-
Concurrentresourcelimits)

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

What Have We Learned So Far?What Have We Learned So Far?
In , Jiri Kraus
from NVIDIA shared many different approaches for Multi-GPU Programming.

Non-CUDA Aware MPI
CUDA Aware MPI
NCCL (pronounced "nickel") - NVIDIA Collective Communication Library
NVSHMEM - NVIDIA Shared Memory Library
Other tips and backgrond information

Today, we will focus on hands-on implementation of CUDA Aware MPI and NCCL within
MiniWeather.

Part 1 (Multi-GPU_Programming_for_Earth_Scientists_Jiri_Kraus_NVIDIA.pdf)

file:///Users/dhoward/Downloads/Multi-GPU_Programming_for_Earth_Scientists_Jiri_Kraus_NVIDIA.pdf

Baseline Performance of Non-CUDA Aware MPIBaseline Performance of Non-CUDA Aware MPI
First, let's compile our baseline program miniWeather_mpi_openacc.F90 . To note,

I/O output has been disabled in all versions. Also, this version has already been partially
modified to offload each MPI task to a distinct GPU.

Casper does not attempt to isolate GPUs between MPI tasks like other HPC centers may
choose to do by default. On Casper, every MPI task can access all GPUs available to the
node it is residing on.

Question: If this baseline code was not modified, why does MiniWeather's performance not
improve with increasing the number of MPI tasks that reside on the same node?

Hint: Which GPU device is each MPI task using?

In []: # Compiles the CUDA aware MPI version of MiniWeather using OpenACC

OPENACC_FLAGS="-acc -gpu=cc70,lineinfo"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_openacc.F90 -o
miniWeather_mpi_openacc.F90.o \

-D_NX=4096 -D_NZ=2048 -D_SIM_TIME=10.0 -D_OUT_FREQ=10.0 -D_DATA_SPEC=DATA_SPEC_THE
RMAL ${OPENACC_FLAGS}

mpif90 -Mextend -O3 miniWeather_mpi_openacc.F90.o -o openacc -L${PNETCDF_LIB} -lpn
etcdf ${OPENACC_FLAGS}

rm -f miniWeather_mpi_openacc.F90.o

Now, submit multi-GPU runs to get some performance benchmarks. We use a validation
script to ensure the answer is correct. The validation script has the following usage syntax,
where n_tasks is optional:

./check_output.sh executable mass_relative_tolerance
energy_relative_tolerance [n_tasks]

To note, Casper has nodes of 4 or 8 GPUs available and the main gpgpu queue allows up to

32 GPUs per job. The gpudev queue allows up to 4 GPUs per job.

In []: for S in 1 # Select number of nodes (Casper: gpgpu -> S*N <= 32, gpudev -> S
*N <= 4)

 do

 for N in 1 2 4 # Number of MPI tasks, CPUs, and GPUs per node (Casper: max(N)=
8, 8-way nodes often busy)

 do

 qcmd -A $PROJECT -q $QUEUE -l select=$S:ncpus=$N:ngpus=$N:mpiprocs=$N -l gpu
_type=$GPU_TYPE -l walltime=30 -- \

 $PWD/check_output.sh $PWD/openacc 1e-13 4.5e-5 $((S*N))

 done

 done

Basics of Communication with MPIBasics of Communication with MPI
The foundation to communicating data and messages for a distributed-memory computer
is the Message Passing Interface (MPI) library. MPI consists of a collection of routines for
exchanging data across distributed memory spaces in a parallel program, ie memory from
one node to another node or one GPU to another GPU.

The MPI standard was first introduced in 1994 and has evolved many times over the years
to a well established level of maturity across multiple library options, such as OpenMPI,
Intel MPI, and MVAPICH.

A complete description of the MPI standard can be found on the
.

MPI Forum's
Documentation Page (https://www.mpi-forum.org/docs/)

https://www.mpi-forum.org/docs/

Basic Structure of MPI ProgramsBasic Structure of MPI Programs
1. Initialize communications

MPI_INIT - initializes the MPI environment

MPI_COMM_SIZE - returns the number of processes

MPI_COMM_RANK - returns this process’s number (rank)

2. Communicate to share data between processes
MPI_SEND - sends a blocking message

MPI_RECV - receives a blocking message

3. Exit from the message-passing system --
MPI_FINALIZE

There also exists collective operations such as MPI_Bcast and MPI_Allreduce . A

primary concept to understand is blocking vs non-blocking communication, ie MPI_Send
vs MPI_ISend .

This concept is similar to synchronous vs asynchnronous operations, discussed in earlier
GPU sessions respectively.

Data Parameters - Example - Example MPI_Send and and MPI_Recv

Source: Cornell's Message Passing Interface Virtual Workshop
(https://cvw.cac.cornell.edu/MPI/messages)

https://cvw.cac.cornell.edu/MPI/messages

Envelope Parameters - Example - Example MPI_Send and and MPI_Recv

Source: Cornell's Message Passing Interface Virtual Workshop
(https://cvw.cac.cornell.edu/MPI/messages)

https://cvw.cac.cornell.edu/MPI/messages

Extension of MPI to Multi-GPU CommunicationExtension of MPI to Multi-GPU Communication
There is not time today to go into more details on MPI. Nonetheless, MPI is an important
framework to understand and forms the basis of development for similar Multi-GPU
communication patterns and developed libraries.

For example, the NCCL library utilizes the communication APIs ncclSend and

ncclRecv , which are functionaly equivalent to MPI_Send and MPI_Recv . Thus,

concepts for MPI communication are very useful for understanding related concepts in
multi-GPU communication patterns. The only caveat is the additional separate memory
space within the GPU alongside the CPU memory.

If you are not that familiar with MPI or want to review beginner/advanced concepts, you
are encouraged to seek out additional learning material such as:

Cornell's Virtual Workshop

NCSA's and UIUC's
 on the

 HPC-Moodle platform
XSEDE's

 May 2022 offering

5-part MPI Series
(https://cvw.cac.cornell.edu/topics#MPI)

Introduction to MPI (https://www.hpc-
training.org/xsede/moodle/enrol/index.php?id=34) hpc-training.org
(https://www.hpc-training.org/xsede/moodle/)

HPC Workshop: MPI (https://www.psc.edu/resources/training/xsede-hpc-
workshop-may-2022-mpi/)

https://cvw.cac.cornell.edu/topics#MPI
https://www.hpc-training.org/xsede/moodle/enrol/index.php?id=34
https://www.hpc-training.org/xsede/moodle/
https://www.psc.edu/resources/training/xsede-hpc-workshop-may-2022-mpi/

Using CUDA Aware MPI for Multi-GPU CommunicationUsing CUDA Aware MPI for Multi-GPU Communication
Fortunately, already provides
an MPI implementation. With OpenACC, calls to MPI had to be surrounded by the
directives !$acc update host() and !$acc update device() (Note:

MPI_ISend / MPI_IRecv are non-blocking MPI calls).

This approach works but is not most optimal given available communication routes
between nodes.

MiniWeather (https://github.com/mrnorman/miniWeather)

!Prepost receives

 call mpi_irecv(recvbuf_l,hs*nz*NUM_VARS,MPI_REAL8, left_rank,0,MPI_COMM_WORLD
,req_r(1),ierr)

 call mpi_irecv(recvbuf_r,hs*nz*NUM_VARS,MPI_REAL8,right_rank,1,MPI_COMM_WORLD
,req_r(2),ierr)

 !OpeanACC GPU Kernel loading send buffers

 !$acc update host(sendbuf_l,sendbuf_r) async

 !$acc wait

 !Fire off the sends

 call mpi_isend(sendbuf_l,hs*nz*NUM_VARS,MPI_REAL8, left_rank,1,MPI_COMM_WORLD
,req_s(1),ierr)

 call mpi_isend(sendbuf_r,hs*nz*NUM_VARS,MPI_REAL8,right_rank,0,MPI_COMM_WORLD
,req_s(2),ierr)

 !Wait for receives to finish

 call mpi_waitall(2,req_r,status,ierr)

 ...

https://github.com/mrnorman/miniWeather

Recall from the previous session how data must be copied from GPU memory to CPU
memory to another node's CPU memory to that node's GPU memory.

MPI_Send(s_buf_d, size, MPI_BYTE, 1, tag, MPI_COMM_WORLD, ierr)

MPI_Recv(r_buf_d, size, MPI_BYTE, 0, tag, MPI_COMM_WORLD, ierr)

OpenACC Interoperability and Implemenations for CUDA Aware MPIOpenACC Interoperability and Implemenations for CUDA Aware MPI
In order to redirect memory movement and avoid unecessary steps between the CPUs and
GPUs, MPI must be provided the GPU device location of data memory. Here's an example
in OpenACC:

Essentialy, within any host_data region in CPU code, data objects given in

use_device() will instead point to device/GPU memory. This simple directive should

tightly encapsulate any MPI calls, allowing a CUDA Aware MPI library to directly reference
memory on the GPU instead of memory on the CPU. If interested, see more OpenACC
interoperability features at

 by Jeff Larkin.

For Casper, the default library OpenMPI enables CUDA aware features by default.

However, different MPI libraries often require you to specify additional flags or
environment variables to use CUDA aware features (slide 22 in

).

!$acc host_data use_device(s_buf_d,r_buf_d)

...
!$acc end host_data

this GitHub (https://github.com/OpenACC/openacc-
interoperability-examples)

Part 1 (Multi-
GPU_Programming_for_Earth_Scientists_Jiri_Kraus_NVIDIA.pdf)

https://github.com/OpenACC/openacc-interoperability-examples
file:///Users/dhoward/Downloads/Multi-GPU_Programming_for_Earth_Scientists_Jiri_Kraus_NVIDIA.pdf

Once the MPI library directly references GPU device memory when setting up
communication, messages communicated across a HPC cluster can more directly travel to
their destinations, shortening the time spent in communication.

!$acc host_data use_device(s_buf_d,r_buf_d)

MPI_Send(s_buf_d, size, MPI_BYTE, 1, tag, MPI_COMM_WORLD, ierr)

MPI_Recv(r_buf_d, size, MPI_BYTE, 0, tag, MPI_COMM_WORLD, ierr)

!$acc end host_data

Using OpenACC to Assign GPU Devices to MPI TasksUsing OpenACC to Assign GPU Devices to MPI Tasks
Parallel programs typically won't automatically know which GPU device it should be
assigned to. Managing this is best left to the developer, which allows multiple
arrangements, ie ...

one process per MPI task per GPU
one process managing multiple GPUs, etc.

A common technique to manage local GPU ranks across global MPI ranks utilizes a split
MPI_COMM_TYPE_SHARED communicator. This instantiates another MPI communicator

that is local to an individual node, indexing a subset of processes across the local node's
available MPI tasks.

With a split communicator, you can then use OpenACC Runtime API functions like
acc_get_num_devices() and acc_set_device() (must specify use openacc)

to assign MPI tasks to specific GPUs given the devices available. An example initialization
code snippet is below:

call MPI_Init(ierr)

 call MPI_Comm_size(MPI_COMM_WORLD, nranks, ierr)

 call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierr)

 call MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, myrank, MPI_IN
FO_NULL, local_comm, ierr)

 call MPI_Comm_rank(local_comm, local_rank, ierr)

 nGPUs_node = acc_get_num_devices(acc_get_device_type())

 call acc_set_device_num(mod(local_rank,nGPUs_node), acc_get_device_type())

EXERCISE - Implement CUDA Aware MPI in EXERCISE - Implement CUDA Aware MPI in
miniWeather_mpiAware_openacc.F90

Following the direction of the TODO sections in

, create a CUDA aware MPI version of
MiniWeather. This will involve the following changes:

1. - Instantiate additional
variables for the split local communicators and number of GPUs

2. - Specify the send and
receive buffers in MPI calls to use GPU device memory

3. - Add a split
communicator and assign GPUs per ranks local to each node

Once finished, use the cells below to compile the CUDA aware version, check for errors,
and run it. If you get stuck, solutions are in the folder.

miniWeather_mpiAware_openacc.F90

(miniWeather_mpiAware_openacc.F90)

Line 78 & 80 (miniWeather_mpiAware_openacc.F90#L78)

Line 401 & 423 (miniWeather_mpiAware_openacc.F90#L401)

Line 505 & 525 (miniWeather_mpiAware_openacc.F90#L505)

solutions (solutions)

file:///Users/dhoward/Downloads/miniWeather_mpiAware_openacc.F90
file:///Users/dhoward/Downloads/miniWeather_mpiAware_openacc.F90#L78
file:///Users/dhoward/Downloads/miniWeather_mpiAware_openacc.F90#L401
file:///Users/dhoward/Downloads/miniWeather_mpiAware_openacc.F90#L505
file:///Users/dhoward/Downloads/solutions

In []: # Compiles the CUDA aware MPI version of MiniWeather using OpenACC, exec = ./opena
ccAware

OPENACC_FLAGS="-acc -gpu=cc70,lineinfo"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpiAware_openacc.F
90 -o miniWeather_mpiAware_openacc.F90.o \

-D_NX=4096 -D_NZ=2048 -D_SIM_TIME=10.0 -D_OUT_FREQ=10.0 -D_DATA_SPEC=DATA_SPEC_THE
RMAL ${OPENACC_FLAGS}

mpif90 -Mextend -O3 miniWeather_mpiAware_openacc.F90.o -o openaccAware -L${PNETCDF
_LIB} -lpnetcdf ${OPENACC_FLAGS}

rm -f miniWeather_mpiAware_openacc.F90.o

In []: # CUDA Aware MPI runs

S=1; N=4

 qcmd -A $PROJECT -q $QUEUE -l select=$S:ncpus=$N:ngpus=$N:mpiprocs=$N -l gpu_typ
e=$GPU_TYPE -l walltime=30 -- \

 $PWD/check_output.sh $PWD/openaccAware 1e-13 4.5e-5 $((S*N))

Using NCCL Library for Multi-GPU CommunicationUsing NCCL Library for Multi-GPU Communication
Leveraging the NVIDIA Collective Communication Library (NCCL) with OpenACC is
relatively the same as CUDA Aware MPI. Below are some significant points to make:

1. Function prototypes for calling NCCL only slightly differ from MPI functions
2. By default, all NCCL functions are blocking within the provided CUDA stream

Grouped non-blocking behavior can be achieved with
ncclGroupStart() and ncclGroupEnd() regions

3. NCCL can directly leverage scheduling and overalapping of
communication/compute on the GPU through effective CUDA stream selection
while MPI cannot

4. Error handling is done via returned values from NCCL functions whereas MPI error
handling is a passed argument

5. NCCL arguably should have better collective communication performance
compared to MPI but point-to-point communication will likely not have
demonstrable benefit

NCCL can achieve improved performance on a well configured system since
it automatically can detect and optimize communication across given node
topologies

Using the NCCL APIUsing the NCCL API
Full documentation for NCCL is

Listed functional prototypes and API specification is

When using any external library, it is highly encouraged to consult available documentation
like the above to learn how to use a library.

In NCCL's case, the same !$acc host_data use_device() approach is required

alongside OpenACC code (or you can directly pass in a device memory pointer from your
own CUDA kernel or other library).

here
(https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html)

here
(https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api.html)

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api.html

Here are important data and function prototypes for NCCL useful for the next exercise:

1. Data prototypes for initializing NCCL
type(ncclUniqueId) :: nccl_id - A unique id for each group of

communicators
type(ncclResult) :: nccl_result - A variable to store return

values from NCCL functions, used for error handling
type(ncclComm) :: nccl_comm - The NCCL comunicator object

2. Function prototypes for initializing NCCL
ncclResult_t ncclGetUniqueId(ncclUniqueId* uniqueId) -

Creates a nccl_id for the communicators

ncclResult_t ncclCommInitRank(ncclComm_t* comm, int
nranks, ncclUniqueId commId, int rank) - Initializes NCCL,

similar to MPI_Init()
3. Function prototypes for Send/Recv communication

ncclResult_t ncclSend(const void* sendbuff, size_t
count, ncclDataType_t datatype, int peer, ncclComm_t
comm, cudaStream_t stream)
ncclResult_t ncclRecv(void* recvbuff, size_t count,
ncclDataType_t datatype, int peer, ncclComm_t comm,
cudaStream_t stream)

To enable runtime NCCL debugging, simply set NCCL_DEBUG = WARN .

EXERCISE - Implement NCCL Library in EXERCISE - Implement NCCL Library in
miniWeather_mpiNCCL_openacc.F90

Extending from the previous exercise, follow the TODO sections in

 to create a
NCCL version of Miniweather. Ideally, make this version portable by using the provided
#ifdef NV_GPU / #endif preprocessor sections.

1. - Load the NCCL library module
2. - Instantiate NCCL variables

needed for communicators
3. - Setup a non-blocking group

of sends and receives similar to the MPI sends and receives, also using OpenACC to
reference GPU memory

4. - Generate NCCL unique Id
and use MPI_Bcast to broadcast to all ranks and initialize NCCL communicators

Use the cells below to compile the NCCL version, check for errors, and run it. If you get
stuck, solutions are in the folder.

miniWeather_mpiNCCL_openacc.F90 (miniWeather_mpiNCCL_openacc.F90)

Line 14 (miniWeather_mpiNCCL_openacc.F90#L14)
Line 93 (miniWeather_mpiNCCL_openacc.F90#L93)

Line 425 (miniWeather_mpiNCCL_openacc.F90#L425)

Line 560 (miniWeather_mpiNCCL_openacc.F90#L560)

solutions (solutions)

file:///Users/dhoward/Downloads/miniWeather_mpiNCCL_openacc.F90
file:///Users/dhoward/Downloads/miniWeather_mpiNCCL_openacc.F90#L14
file:///Users/dhoward/Downloads/miniWeather_mpiNCCL_openacc.F90#L93
file:///Users/dhoward/Downloads/miniWeather_mpiNCCL_openacc.F90#L425
file:///Users/dhoward/Downloads/miniWeather_mpiNCCL_openacc.F90#L560
file:///Users/dhoward/Downloads/solutions

In []: # Compiles the NCCL version of MiniWeather using OpenACC, exec = ./openaccNCCL

OPENACC_FLAGS="-acc -gpu=cc70,lineinfo"

mpif90 -I${PNETCDF_INC} -I${NCCL_INC} -Mextend -O0 ${OPENACC_FLAGS} \

-DNV_GPU -DNO_INFORM -D_NX=4096 -D_NZ=2048 -D_SIM_TIME=10.0 -D_OUT_FREQ=10.0 -D_DA
TA_SPEC=DATA_SPEC_THERMAL \

-c miniWeather_mpiNCCL_openacc.F90 -o miniWeather_mpiNCCL_openacc.F90.o

mpif90 -Mextend -O3 ${OPENACC_FLAGS} miniWeather_mpiNCCL_openacc.F90.o -o openaccN
CCL \

-L${PNETCDF_LIB} -lpnetcdf -L${NCCL_LIB} -lnccl

rm -f miniWeather_mpiNCCL_openacc.F90.o

In []: # NCCL runs

S=1; N=4

 qcmd -A $PROJECT -q $QUEUE -l select=$S:ncpus=$N:ngpus=$N:mpiprocs=$N -l gpu_typ
e=$GPU_TYPE -l walltime=30 -- \

 $PWD/check_output.sh $PWD/openaccNCCL 1e-13 4.5e-5 $((S*N))

Generate Generate nsys Profiles of Multi-GPU Jobs Profiles of Multi-GPU Jobs
Use the below cells and included script to generate

profile reports of each program.

nsysMPI_pbs.sh (nsysMPI_pbs.sh)

In []: qsub -q gpudev -v EXEC=openacc,N=4 -l select=1:ncpus=4:ngpus=4:mpiprocs=4 nsysMPI_
pbs.sh

In []: qsub -q gpudev -v EXEC=openaccAware,N=4 -l select=1:ncpus=4:ngpus=4:mpiprocs=4 nsy
sMPI_pbs.sh

In []: qsub -q gpudev -v EXEC=openaccNCCL,N=4 -l select=1:ncpus=4:ngpus=4:mpiprocs=4 nsys
MPI_pbs.sh

file:///Users/dhoward/Downloads/nsysMPI_pbs.sh

Additional ConsiderationsAdditional Considerations
The following UCX and OpenMPI environment variables are currently recommended for

optimal performance of CUDA Aware MPI applications. Future testing and system
adjustements may modify these recommendations. Notably, gdr_copy is currently not

incuded in UCX_TLS .

Add the following to qcmd to try it out.

-v
CUDA_LAUNCH_BLOCKING=0,"UCX_TLS='rc,sm,cuda_copy,cuda_ipc'",OMPI_MC

"OMPI_MCA_btl='self,vader,tcp,smcuda'",UCX_RNDV_SCHEME=get_zcopy,UC
 UCX_MAX_RNDV_RAILS=1,UCX_MEMTYPE_CACHE=n

export CUDA_LAUNCH_BLOCKING=0

export UCX_TLS=rc,sm,cuda_copy,cuda_ipc

export OMPI_MCA_pml=ucx

export OMPI_MCA_btl=self,vader,tcp,smcuda #openib

export UCX_RNDV_SCHEME=get_zcopy

export UCX_RNDV_THRESH=0

export UCX_MAX_RNDV_RAILS=1

export UCX_MEMTYPE_CACHE=n

ResourcesResources
MPI

Cornell's Virtual Workshop

NCSA's and UIUC's
 on the

 HPC-Moodle platform
XSEDE's

 May 2022 offering
Multi-GPU

Condensed NVIDIA documentation on

Full NVIDIA

material as provided at SC21 and ISC22
Cineca's

, Conjugate Gradient solver using CUDA Aware MPI and
NCCL
Jiri Kraus'

5-part MPI Series
(https://cvw.cac.cornell.edu/topics#MPI)

Introduction to MPI (https://www.hpc-
training.org/xsede/moodle/enrol/index.php?id=34) hpc-training.org
(https://www.hpc-training.org/xsede/moodle/)

HPC Workshop: MPI
(https://www.psc.edu/resources/training/xsede-hpc-workshop-may-2022-
mpi/)

NCCL Fortran API
(https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-
interfaces/index.html#cfnccl-runtime)

NCCL Documentation
(https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html)
Julich Multi-GPU Tutorial (https://github.com/FZJ-JSC/tutorial-multi-gpu)

OpenACC Tutorial (https://github.com/romerojosh/cineca-
openacc-tutorial)

Multi-GPU Programming Model

https://cvw.cac.cornell.edu/topics#MPI
https://www.hpc-training.org/xsede/moodle/enrol/index.php?id=34
https://www.hpc-training.org/xsede/moodle/
https://www.psc.edu/resources/training/xsede-hpc-workshop-may-2022-mpi/
https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfnccl-runtime
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://github.com/FZJ-JSC/tutorial-multi-gpu
https://github.com/romerojosh/cineca-openacc-tutorial
https://github.com/NVIDIA/multi-gpu-programming-models

