
Verifying Code Correctness
with PCAST
By: Daniel Howard , Consulting Services Group, CISL & NCAR

Date: May 19th, 2022

dhoward@ucar.edu

mailto:dhoward@ucar.edu

In this notebook, we return to the MiniWeather application to learn how to use PCAST, a
tool specific to the NVIDIA HPC SDK for verifying code correctness. We will cover:

Benefits and Challenges of Validating Scientific Software

Usage of Parallel Compiler Assisted Software Testing (PCAST)

Comparing CPU and GPU Code Execution

PCAST with a Golden File

PCAST with OpenACC and Autocompare

Head to the and start a JupyterHub session on Casper login
(or batch nodes using 1 CPU, no GPUs) and open the notebook in
08_PCAST/08_PCAST.ipynb . Be sure to clone (if needed) and update/pull the NCAR
GPU_workshop directory.

Workshop Etiquette
Please mute yourself and turn off video during the session.

Questions may be submitted in the chat and will be answered when appropriate. You

may also raise your hand, unmute, and ask questions during Q&A at the end of the

presentation.

By participating, you are agreeing to

Recordings & other material will be archived & shared publicly.

Feel free to follow up with the GPU workshop team via Slack or submit support

requests to

Office Hours: Asynchronous support via or schedule a time with an

organizer

NCAR JupyterHub portal

Use the JupyterHub GitHub GUI on the left panel or the below shell
commands

git clone git@github.com:NCAR/GPU_workshop.git

git pull

UCAR’s Code of Conduct

support.ucar.edu

Slack

https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu/
https://ncargpuusers.slack.com/

Complete Mid-Workshop Series Survey
In order to get feedback on and improve future GPU workshop series sessions, please
complete the below survey. We will spend 3-5 minutes at the start of today's session to
collect your feedback.

Head to or scan the below QR code.

If you've finished the survey, feel free to ask questions about any past material or other
GPU topics during this time.

https://forms.gle/RRkfwnHnDsqqe1zE9

https://forms.gle/RRkfwnHnDsqqe1zE9

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

In []: export PROJECT=SCSG0001

export QUEUE=gpudev

export GPU_TYPE=v100

module load nvhpc/22.2 &> /dev/null

export PNETCDF_INC=/glade/u/apps/dav/opt/pnetcdf/1.12.2/openmpi/4.1.1/n
export PNETCDF_LIB=/glade/u/apps/dav/opt/pnetcdf/1.12.2/openmpi/4.1.1/n

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Benefits of Validating Scientific Software
Building trust is paramount for the effective sharing and receiving of computational
software. From NASA's ,
verification and validation is a key component of building trust in scientific software. They
contribute towards effective transparency and reproducibility.

Open Source Science for Data Processing and Archives Workshop

https://www.openscapes.org/blog/2021/10/18/nasa-open-source-science/

Open Science and Reproducibility
Including tools, methods, and documentation for validating software can meaningfully build
greater trust in the accuracy of scientific codes and enhance reproducibility.

From Altuna Akalin,

Promoting and utilizing open science best practices, including making data, code,
documentation, and associated tools like validation suites open source, tends to lead to
increased recognition and citation rates. See

 (McKiernan, et. al., NIH eLife) and (Heroux,
PASC18).

Scientific Data Analysis Pipelines and Reproducibility

How Open Science Helps Researchers
Succeed Reproducibility in Scientific Software

https://towardsdatascience.com/scientific-data-analysis-pipelines-and-reproducibility-75ff9df5b4c5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973366/
https://www.osti.gov/servlets/purl/1525948

Validation and the Perils of Software Bug Mismanagment
Invariably, bugs WILL be added to your code. On average in industry, this can range from
1-25 errors per 1,000 lines of code. Recounting from
(ISC 2018, Anshu Dubey), let's look at the case of modeling protein structures by Geoffrey
Chang.

New code inadvertently transposed columns of data for an electron-density map

Model code then produced an incorrect protein structure

Led to the retraction of 5 publications, one with 364 citations

Other papers and grants that conflicted with this result were rejected

Chang did find and report the error himself

Being able to catch errors in code through unit testing or other means is vitally important
to avoid such issues.

Testing of HPC Scientific Software

https://figshare.com/articles/presentation/Testing_of_HPC_Scientific_Software-_Part_1/6453017

Validation and the Perils of Software Bug Mismanagment
Invariably, bugs WILL be added to your code. On average in industry, this can range from
1-25 errors per 1,000 lines of code. Recounting from
(ISC 2018, Anshu Dubey), let's look at the case of modeling protein structures by Geoffrey
Chang.

New code inadvertently transposed columns of data for an electron-density map

Model code then produced an incorrect protein structure

Led to the retraction of 5 publications, one with 364 citations

Other papers and grants that conflicted with this result were rejected

Chang did find and report the error himself

Being able to catch errors in code through unit testing or other means is vitally important
to avoid such issues.

Testing of HPC Scientific Software

PCAST does not specifically do "unit testing" but learn more about the broader landscape
of software reliability under the scope of research software via the

 (BSSw) organization:

BSSW's

BSSW's

Better Scientific
Software

Better Reliability blog post category

Software Verification blog post

https://figshare.com/articles/presentation/Testing_of_HPC_Scientific_Software-_Part_1/6453017
https://bssw.io/
https://bssw.io/items?category=better-reliability
https://bssw.io/blog_posts/software-verification

Challenges of Validating Scientific Software
Achieving appropriate validation workflows is often not easy, particularly in the case of
constantly changing scientific software. The paper

 by Vogel, et. al. at Humboldt
University and DLR highlights common issues while implementing testing frameworks.

Challenges for Verifying and Validating
Scientific Software in Computational Materials Science

https://arxiv.org/abs/1906.09179

1. Lack of Precise Oracles

Knowing the precise output of a science/engineering model is typically

impossible a priori

IEEE floating point computations are inexact and change depending on

operation ordering and type

See

 by David Goldberg

What every computer scientist should know about floating-point

arithmetic

https://dl.acm.org/doi/10.1145/103162.103163

1. Lack of Precise Oracles

Knowing the precise output of a science/engineering model is typically

impossible a priori

IEEE floating point computations are inexact and change depending on

operation ordering and type

See

 by David Goldberg

What every computer scientist should know about floating-point

arithmetic

1. Large Configuration Space

Experimental nature of scientific software promotes the selection of many

different algorithms and approaches to problem solving

https://dl.acm.org/doi/10.1145/103162.103163

1. Lack of Precise Oracles

Knowing the precise output of a science/engineering model is typically

impossible a priori

IEEE floating point computations are inexact and change depending on

operation ordering and type

See

 by David Goldberg

What every computer scientist should know about floating-point

arithmetic

1. Large Configuration Space

Experimental nature of scientific software promotes the selection of many

different algorithms and approaches to problem solving

1. Large-Scale, Heterogeneous Data

Selecting test and validation data at pre- and post-processing steps

results in high data variablilty

Test data is then inherently cumbersome and expensive to manage

https://dl.acm.org/doi/10.1145/103162.103163

1. Lack of Precise Oracles

Knowing the precise output of a science/engineering model is typically

impossible a priori

IEEE floating point computations are inexact and change depending on

operation ordering and type

See

 by David Goldberg

What every computer scientist should know about floating-point

arithmetic

1. Large Configuration Space

Experimental nature of scientific software promotes the selection of many

different algorithms and approaches to problem solving

1. Large-Scale, Heterogeneous Data

Selecting test and validation data at pre- and post-processing steps

results in high data variablilty

Test data is then inherently cumbersome and expensive to manage

1. Global Software Development

Modern large scale software projects, like in climate science, is difficult to

manage across global teams

Standardizing testing frameworks across disparate teams is a political

process

https://dl.acm.org/doi/10.1145/103162.103163

PCAST: Parallel Compiler Assisted Software
Testing
The PCAST tool serves as a convenient compiler aided framework for quickly building in
some level of software testing into your development workflow, particularly to compare
CPU data to GPU data.

However, PCAST won't enable all the benefits of software validation or resolve all the
challenges previously discussed.

PCAST: Parallel Compiler Assisted Software
Testing
The PCAST tool serves as a convenient compiler aided framework for quickly building in
some level of software testing into your development workflow, particularly to compare
CPU data to GPU data.

However, PCAST won't enable all the benefits of software validation or resolve all the
challenges previously discussed.

Primarily, PCAST allows for you to check that...

1. Output from previously run code is similar to or equal to the output of a minimally

modified code

2. Calculations performed on the CPU is similar to or equal to calulations performed on

the GPU

GPU Program Execution - Normal

GPU Program Execution - PCAST

Usage of PCAST
The main documentation for using PCAST can be found within NVIDIA's HPC SDK
Documentation, . Alternatively, the NVIDIA blog post

 may be referenced as a more
casual read.

Usage with a Golden File: Run PCAST using calls to pcast_compare or !$nvf
compare() directives (latter requires compiler flag -Mpcast) for CPU resident
comparisons to a golden file.

Usage with OpenACC: Run PCAST using calls to acc_compare or !$acc
compare() directives alongside usage of compiler flag -gpu=redundant or -
gpu=autocompare .

Additional options can be set using the PCAST_COMPARE={option-list} environment
variable.

HPC Compiler's User Guide Detecting
Divergence Using PCAST to Compare CPU to GPU Results

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#pcast
https://developer.nvidia.com/blog/detecting-divergence-using-pcast-to-compare-gpu-to-cpu-results/

Usage of PCAST - Golden File
In this first approach, PCAST can compare successive program runs against a ground truth
golden file. Essentially, CPU results will be compared to CPU results, with the assumption
that the results in the golden file are correct.

NOTE: It's up to the programmer to determine if the results are in fact correct according to
the model.

With calls to pcast_compare(...) or !$nvf compare(var-list) directives, a
data file named pcast_compare.dat by default will either be created if it does not exist
or read to compare computed data with saved data from the data file. If using directives,
PCAST will only be enabled if the program is compiled with the -Mpcast flag.

Notably, the directive is much more portable and significantly easier to use, ie !$nvf
compare(a(1:N)) , only requiring the input to be a var-list with an inferred full size
of the array or specified sub-slices.

pcast_compare() Prototype
Example arguments for the pcast_compare(...) function is given below, where the
last 4 arguments are flexible to the descriptiveness required:

pcast_compare(state,"real(8)",(2*hs+nx)*
(2*hs+nz)*NUM_VARS,"state","miniweather_orig.F90","main",155)

1. The address of the data to be saved or compared.

2. A string containing the data type, ie real(2,4,8) integer(2,4,8)

complex(4,8)

3. The number of elements to compare.

4. A string treated as the variable name.

5. A string treated as the source file name.

6. A string treated as the function name.

7. An integer treated as a line number.

Additional PCAST Options
Additonal options can be supplied to the PCAST runtime by modifying the
PCAST_COMPARE={option-list} environment variable.

datafile="name.dat" : Change the name of the golden file

create : Explicitly force the creation of the golden file

compare : Explicitly force the comparison to the golden file

disable : Disable any PCAST actions from taking place and force PCAST

functions to immediately return with no effect. This does not disable -

gpu=redundant execution if enabled for OpenACC codes

All PCAST_COMPARE environmental variable options can be found in the
.

NVIDIA
Documentation

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#pcast-env-vars

EXERCISE: Usage of PCAST - Create a Golden
File
We will first use the original OpenACC version of in order to create a golden
file from the openacc_orig executable. To do this, edit the file

 and add either call pcast_compare() or
directives !$nvf compare() where desired. If you use the function call, make sure to
add use openacc to head of program (already done) and follow the function prototype
given previously.

A simple recommendation is to save results of the state variable into the golden file near
the end of program execution. Of course, additional variables could be saved but keep in
mind, if pcast_compare() or its associated directive is called too many times across
program execution, the golden file can grow to very large sizes.

Then, run the next two cells to compile and run the code on the GPU. For future exercises,
be sure to keep the configuration of the model consistent.

MiniWeather

miniWeather_mpi_openacc_orig.F90

https://github.com/mrnorman/miniWeather/blob/master/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc_orig.F90

EXERCISE: Usage of PCAST - Create a Golden
File
We will first use the original OpenACC version of in order to create a golden
file from the openacc_orig executable. To do this, edit the file

 and add either call pcast_compare() or
directives !$nvf compare() where desired. If you use the function call, make sure to
add use openacc to head of program (already done) and follow the function prototype
given previously.

A simple recommendation is to save results of the state variable into the golden file near
the end of program execution. Of course, additional variables could be saved but keep in
mind, if pcast_compare() or its associated directive is called too many times across
program execution, the golden file can grow to very large sizes.

Then, run the next two cells to compile and run the code on the GPU. For future exercises,
be sure to keep the configuration of the model consistent.

MiniWeather

miniWeather_mpi_openacc_orig.F90

In []: export OPENACC_FLAGS="-acc -gpu=cc60,cc70 -Mpcast"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=200 -D_NZ=100 -D_SIM_TIME=2.01 -D_OUT_FREQ=1 -D_DATA_SPEC=DATA_SP

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc_orig.F90.o -o o
rm -f miniWeather_mpi_openacc_orig.F90.o

https://github.com/mrnorman/miniWeather/blob/master/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc_orig.F90

EXERCISE: Usage of PCAST - Create a Golden
File
We will first use the original OpenACC version of in order to create a golden
file from the openacc_orig executable. To do this, edit the file

 and add either call pcast_compare() or
directives !$nvf compare() where desired. If you use the function call, make sure to
add use openacc to head of program (already done) and follow the function prototype
given previously.

A simple recommendation is to save results of the state variable into the golden file near
the end of program execution. Of course, additional variables could be saved but keep in
mind, if pcast_compare() or its associated directive is called too many times across
program execution, the golden file can grow to very large sizes.

Then, run the next two cells to compile and run the code on the GPU. For future exercises,
be sure to keep the configuration of the model consistent.

MiniWeather

miniWeather_mpi_openacc_orig.F90

In []: export OPENACC_FLAGS="-acc -gpu=cc60,cc70 -Mpcast"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=200 -D_NZ=100 -D_SIM_TIME=2.01 -D_OUT_FREQ=1 -D_DATA_SPEC=DATA_SP

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc_orig.F90.o -o o
rm -f miniWeather_mpi_openacc_orig.F90.o

https://github.com/mrnorman/miniWeather/blob/master/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc_orig.F90

In []: export PCAST_COMPARE="create"

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU
cd $PWD && ./openacc_orig

EXERCISE: Usage of PCAST - Test against a
Golden File
Add the same pcast_comapre() calls or directives to the non-original file

. A bug has been introduced somewhere in the code.

Make and run the non-original file and use the PCAST report to try to determine where
the bug is.

1. Would testing additional variables via PCAST across the MiniWeather code

fascilitate this search better?

2. What would be an easier way to find the source of the bug? Hint: Use diff

command.

3. How would you incorporate PCAST testing in a development workflow to

minimize creation of bugs as changes are made to source files?

miniWeather_mpi_openacc.F90

file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc.F90

EXERCISE: Usage of PCAST - Test against a
Golden File
Add the same pcast_comapre() calls or directives to the non-original file

. A bug has been introduced somewhere in the code.

Make and run the non-original file and use the PCAST report to try to determine where
the bug is.

1. Would testing additional variables via PCAST across the MiniWeather code

fascilitate this search better?

2. What would be an easier way to find the source of the bug? Hint: Use diff

command.

3. How would you incorporate PCAST testing in a development workflow to

minimize creation of bugs as changes are made to source files?

miniWeather_mpi_openacc.F90

In []: export OPENACC_FLAGS="-acc -gpu=cc60,cc70 -Mpcast"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=200 -D_NZ=100 -D_SIM_TIME=2.01 -D_OUT_FREQ=1 -D_DATA_SPEC=DATA_SP

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc.F90.o -o openac
rm -f miniWeather_mpi_openacc.F90.o

file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc.F90

EXERCISE: Usage of PCAST - Test against a
Golden File
Add the same pcast_comapre() calls or directives to the non-original file

. A bug has been introduced somewhere in the code.

Make and run the non-original file and use the PCAST report to try to determine where
the bug is.

1. Would testing additional variables via PCAST across the MiniWeather code

fascilitate this search better?

2. What would be an easier way to find the source of the bug? Hint: Use diff

command.

3. How would you incorporate PCAST testing in a development workflow to

minimize creation of bugs as changes are made to source files?

miniWeather_mpi_openacc.F90

In []: export OPENACC_FLAGS="-acc -gpu=cc60,cc70 -Mpcast"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=200 -D_NZ=100 -D_SIM_TIME=2.01 -D_OUT_FREQ=1 -D_DATA_SPEC=DATA_SP

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc.F90.o -o openac
rm -f miniWeather_mpi_openacc.F90.o

file:///Users/dhoward/Documents/workshop/miniWeather_mpi_openacc.F90

In []: export PCAST_COMPARE="compare,summary"

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU
cd $PWD && ./openacc

Usage of PCAST - OpenACC and -
gpu=redundant / -gpu=autocompare
In this second aproach, PCAST can be run to directly compare the calculations between
the CPU and GPU.

In redundant mode, CPU code is generated alongside GPU code and ran redundantly.
Then, every time a call acc_compare() or !$acc compare() directive is
encountered, the compiler will verify the values between any specified variables.

In autocompare mode, CPU code is again generated alongside GPU code and ran
reduntantly. Then, every time data is moved between CPU and GPU, such as via an !$acc
update host() directive or at the edges of data regions, the compiler will verify the
values between the data that was to be moved.

For a comprehensive comparison of all GPU resident data, you can also use call
acc_compare_all() or !$acc compare all .

autocompare is the easiest method to quickly test correctness between CPU and GPU
code particularly when using OpenACC. The flag automaticaly implies redundant . Since
the source file stays the same, ie directive comments are ignored when generating CPU
code, this can highlight if the OpenACC runtime is introducing any divergence in the GPU
target code either due to inappropriate loop directives, ie missing private() or
reduction() , or bad managagement of data movement.

Additional PCAST Options
Additonal options can be supplied to the PCAST runtime by modifying the
PCAST_COMPARE={option-list} environment variable. These options are also
relevant for golden file mode.

outputfile="name.dat" : Specify the file to write comparison output. Default is

stderr

summary : Print summary of comparisons at the end of execution

abs=n , rel=n , ulp=n , or ieee : Specify the types and tolerance of

comparisons performed, where n is the magnitude of relative 10^n, absolute 10^n,

or number of units precision difference tolerated respectively. Add ieee to enable

NaN checks

report=n : Modify the default number (50) differences reported at each

comparison where n is the number of differences to report

stop : Stop at the first difference outside of tolerance

All PCAST_COMPARE environmental variable options can be found in the
.

NVIDIA
Documentation

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#pcast-env-vars

EXERCISE: Usage of PCAST - OpenACC and -
gpu=redundant / -gpu=autocompare
Try out PCAST with autocompare . Initially, you will notice that many "errors" are
reported. However, all of them are within machine precision error. Add the
PCAST_COMPARE flag abs=12 in order to tolerate errors within a reasonable bounds. If
you like, add additional !$acc update host() directives in different parts of
MiniWeather to automatically compare in additional regions.

1. How does this impact your confidence in the correctness of the GPU code?

2. Try adding the tile(32,32,NUM_VARS) clause like in a previous OpenACC

exercise that produced incorrect results. Can you verify the incorrect results

more clearly with PCAST?

EXERCISE: Usage of PCAST - OpenACC and -
gpu=redundant / -gpu=autocompare
Try out PCAST with autocompare . Initially, you will notice that many "errors" are
reported. However, all of them are within machine precision error. Add the
PCAST_COMPARE flag abs=12 in order to tolerate errors within a reasonable bounds. If
you like, add additional !$acc update host() directives in different parts of
MiniWeather to automatically compare in additional regions.

1. How does this impact your confidence in the correctness of the GPU code?

2. Try adding the tile(32,32,NUM_VARS) clause like in a previous OpenACC

exercise that produced incorrect results. Can you verify the incorrect results

more clearly with PCAST?

In []: export OPENACC_FLAGS="-acc -gpu=autocompare,cc60,cc70"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=1024 -D_NZ=512 -D_SIM_TIME=200.01 -D_OUT_FREQ=20 -D_DATA_SPEC=DAT

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc.F90.o -o openac
rm -f miniWeather_mpi_openacc.F90.o

EXERCISE: Usage of PCAST - OpenACC and -
gpu=redundant / -gpu=autocompare
Try out PCAST with autocompare . Initially, you will notice that many "errors" are
reported. However, all of them are within machine precision error. Add the
PCAST_COMPARE flag abs=12 in order to tolerate errors within a reasonable bounds. If
you like, add additional !$acc update host() directives in different parts of
MiniWeather to automatically compare in additional regions.

1. How does this impact your confidence in the correctness of the GPU code?

2. Try adding the tile(32,32,NUM_VARS) clause like in a previous OpenACC

exercise that produced incorrect results. Can you verify the incorrect results

more clearly with PCAST?

In []: export OPENACC_FLAGS="-acc -gpu=autocompare,cc60,cc70"

mpif90 -I${PNETCDF_INC} -Mextend -O0 -DNO_INFORM -c miniWeather_mpi_ope
-D_NX=1024 -D_NZ=512 -D_SIM_TIME=200.01 -D_OUT_FREQ=20 -D_DATA_SPEC=DAT

mpif90 -Mextend -O3 -DNO_INFORM miniWeather_mpi_openacc.F90.o -o openac
rm -f miniWeather_mpi_openacc.F90.o

In []: export PCAST_COMPARE="summary,report=2,stop"

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU
$PWD/openacc

Final Points
1. PCAST is not able to verify that the original CPU code is correct accoring to the

science or model specification.

2. However, you can use PCAST to verify that CPU+GPU results stay consistent

across minor refactoring edits using a golden file.

3. PCAST can verify that the results computed between CPU and GPU are in

agreement and correct, up to machine precision error.

Differences between how GPU and CPU code is compiled can still

introduce machine precision error.

4. Implementing some form of validation and verification in a development

workflow establishes greater trust in the software and minimizes bugs.

Suggested Resources

 - Vogel, et. al.

 - ISC 2018, Anshu Dubey

BSSW's

BSSW's

HPC Compiler's User Guide

Detecting Divergence Using PCAST to Compare CPU to GPU Results

Challenges for Verifying and Validating Scientific Software in Computational

Materials Science

Testing of HPC Scientific Software

Better Reliability blog post category

Software Verification blog post

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#pcast
https://developer.nvidia.com/blog/detecting-divergence-using-pcast-to-compare-gpu-to-cpu-results/
https://arxiv.org/abs/1906.09179
https://figshare.com/articles/presentation/Testing_of_HPC_Scientific_Software-_Part_1/6453017
https://bssw.io/items?category=better-reliability
https://bssw.io/blog_posts/software-verification

