
Directive Based
Programming with
OpenACC, Part 2
By: Daniel Howard , Consulting Services Group, CISL & NCAR

Date: April 14th 2022

dhoward@ucar.edu

mailto:dhoward@ucar.edu

In this notebook we present techniques and code examples using Matt Norman's
MiniWeather for using OpenACC to develop for GPUs. Extending from , we will cover:

1. Detailing of OpenACC API Directives

Data Constructs - !$acc data & !$acc end data plus !$acc

enter/exit data

Routine Directives and Other Clauses - !$acc routine

gang/worker/vector/seq

Async and Wait Directives - !$acc async() & !$acc wait()

OpenACC API Runtime Library Routines

2. Interfacing OpenACC with CUDA

3. Advanced OpenACC Optimization Techniques

Part 1

file:///Users/dhoward/Documents/workshop/05_openACC_miniWeather_Tutorial.ipynb

Head to the and start a JupyterHub session on Casper login
(or batch nodes using 1 CPU, no GPUs) and open the notebook in
05_DirectivesOpenACC/05p2_openACC_miniWeather_Tutorial.ipynb . Be
sure to clone (if needed) and update/pull the NCAR GPU_workshop directory.

Workshop Etiquette
Please mute yourself and turn off video during the session.

Questions may be submitted in the chat and will be answered when appropriate. You

may also raise your hand, unmute, and ask questions during Q&A at the end of the

presentation.

By participating, you are agreeing to

Recordings & other material will be archived & shared publicly.

Feel free to follow up with the GPU workshop team via Slack or submit support

requests to

Office Hours: Asynchronous support via or schedule a time with an

organizer

NCAR JupyterHub portal

Use the JupyterHub GitHub GUI on the left panel or the below shell commands

git clone git@github.com:NCAR/GPU_workshop.git

git pull

UCAR’s Code of Conduct

support.ucar.edu

Slack

https://jupyterhub.hpc.ucar.edu/stable
https://www.ucar.edu/who-we-are/ethics-integrity/codes-conduct/participants
https://support.ucar.edu/
https://ncargpuusers.slack.com/

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

In []:
export PROJECT=UCIS0004

export QUEUE=gpudev

export GPU_TYPE=v100

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

In []:
export PROJECT=UCIS0004

export QUEUE=gpudev

export GPU_TYPE=v100

Test that MiniWeather builds correctly below. This build uses the already refactored and
complete source file as well as the CPU only

 source file which serves as a basis for later exercises.
miniWeather_mpi_openacc.F90

miniWeather_mpi.F90

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits
file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi.F90

Notebook Setup
Set the PROJECT code to a currently active project, ie UCIS0004 for the GPU workshop,
and QUEUE to the appropriate routing queue depending on if during a live workshop
session (gpuworkshop), during weekday 8am to 5:30pm MT (gpudev), or all other
times (casper). Due to limited shared GPU resources, please use GPU_TYPE=gp100
during the workshop. Otherwise, set GPU_TYPE=v100 (required for gpudev) for
independent work. See for more info.Casper queue documentation

In []:
export PROJECT=UCIS0004

export QUEUE=gpudev

export GPU_TYPE=v100

Test that MiniWeather builds correctly below. This build uses the already refactored and
complete source file as well as the CPU only

 source file which serves as a basis for later exercises.
miniWeather_mpi_openacc.F90

miniWeather_mpi.F90

In []:
cd fortran/build

source cmake_casper_nvhpc.sh

cd ../..

After running this, there will be the executables `mpi` and `openacc` in "fortran/build"

https://arc.ucar.edu/knowledge_base/72581396#StartingCasperjobswithPBS-Concurrentresourcelimits
file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_openacc.F90
file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi.F90

Lastly, make and run the new program to establish a
performance baseline.

miniWeather_mpi_exercise2.F90

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90

Lastly, make and run the new program to establish a
performance baseline.

miniWeather_mpi_exercise2.F90

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2 1e-13 4.5e-5

cd ../..

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90

Data Locaility and Data Movement Bandwidth
Previously, our work with MiniWeather utilized the -gpu=managed flag which setup a
unified memory environment allowing us to not have to worry about data movement.
However, unless the code has been designed to keep data resident on the GPU, managed
memory typically will not allow for optimal performance.

Recalling the design of heterogeneous GPU accelerated systems, the following diagram
shows limits of data movement by the size of the arrows between each memory space.

CPU to GPU I/O PCIe Bus: 15.75 GB/s for PCIe Gen3 V100s (31.5 GB/s for PCIe

Gen4 capable A100s)

CPU to High Capacity DDR4-2666 Memory (Casper): 127.8 GB/s per CPU socket

across 6 memory channels, 21.3 GB/s each

GPU to GPU via NVLink: 300 GB/s for V100s (600 GB/s for A100s)

GPU HBM2 (High Bandwidth Memory 2): 900 GB/s for V100s (1,555 GB/s for the

40GB A100s)

CPU to GPU Data Movement is Costly!
The bandwidth transfer rate for CPU to GPU data movement is the slowest in

present day heterogeneous systems

Data transfers between the CPU and GPU should be minimized and ideally avoided

Using OpenACC's directives !$acc data , !$acc enter/exit data , and !$acc
update ... allow you to manage directly residency of data across the distinct CPU and
GPU memory spaces.

Data Directives
Reviewing -Minfo=accel output from last session, many data clauses were implicitly
specified by the compiler despite using -gpu=managed . Data clauses are below:

OpenACC OpenMP Description

Data Clauses Specifies data movement between CPU & GPU in
parallel/data regions

create([zero]:vars) alloc(vars) Allocates memory on target device for data object,
optionally initializes to zero values

copy(vars) map(tofrom:vars) Allocates memory if needed and copies data at region
entry/exit

copyin(vars) map(to:vars) Allocates memory if needed and copies data at region entry

copyout([zero]:vars) map(from:vars) Allocates memory if needed and copies data object at
region exit, optionally initializes to zero values

present(vars) assert(omp_target_is_present(vars))
Indicates that a data object is already present on GPU.
Previous clauses include an implicit present() such that
if true, that clause's action will not be performed

delete(vars) dealloc(vars) Deallocates memory on target device for data object

deviceptr(vars) is_device_ptr(vars) Declares device pointers such that data does not need to be
moved/allocated

attach(vars) N/A Increments the attachment counter for a pointer

detach(vars) N/A Decrements the attachment counter for a pointer

finalize N/A
Sets structured or dynamic reference counter to 0 and
forces action of copyout() , detach() , or delete()

Data Directives
Reviewing -Minfo=accel output from last session, many data clauses were implicitly
specified by the compiler despite using -gpu=managed . Data clauses are below:

OpenACC OpenMP Description

Data Clauses Specifies data movement between CPU & GPU in
parallel/data regions

create([zero]:vars) alloc(vars) Allocates memory on target device for data object,
optionally initializes to zero values

copy(vars) map(tofrom:vars) Allocates memory if needed and copies data at region
entry/exit

copyin(vars) map(to:vars) Allocates memory if needed and copies data at region entry

copyout([zero]:vars) map(from:vars) Allocates memory if needed and copies data object at
region exit, optionally initializes to zero values

present(vars) assert(omp_target_is_present(vars))
Indicates that a data object is already present on GPU.
Previous clauses include an implicit present() such that
if true, that clause's action will not be performed

delete(vars) dealloc(vars) Deallocates memory on target device for data object

deviceptr(vars) is_device_ptr(vars) Declares device pointers such that data does not need to be
moved/allocated

attach(vars) N/A Increments the attachment counter for a pointer

detach(vars) N/A Decrements the attachment counter for a pointer

finalize N/A
Sets structured or dynamic reference counter to 0 and
forces action of copyout() , detach() , or delete()

Each clause can reference a list of variables, ie vars = var1,var2,... or subsets of
variable arrays. For example, copy(a,b(10:20)) copies from CPU to GPU at region
entry and from GPU to CPU at region exit both the variable a (full array by default) and
only the slice of b indexed from 10 through 20.

Scope of Data Directives and Data Regions
All data clauses can only be used in the scope of a ...

Structured Data Region or localized regions of code

Compute constructs regions like !$acc

kernels/parallel/serial ... & !$acc end

kernels/parallel/serial

Data constructs regions like !$acc data ... & !$acc end data

Implicit data regions of a function, subroutine, or program dependent on

where !$acc declare ... directive is used

Uses structured reference counters

Unstructured Data Region or global program execution

In a data directive like !$acc enter data ... or !$acc exit

data ...

Uses dynamic reference counters

Unstructured Data Regions are preferred particularly when dealing with object oriented
codes where the programmer may need to manage data locality across multiple modules,
subroutines/functions, and source files.

Specific clauses can only be used in certain contexts. For example:

present() cannot be used with !$acc enter/exit data ...

delete() can only be used with !$acc exit data ...

See specifications for each region construct in

for more details

Note: We will not cover deviceptr() , attach() , and dettach() in this notebook.
These clauses are typically useful for CUDA libraries interoperaility and CUDA aware MPI
with OpenACC.

OpenACC 2.7 Quick Reference Guide

https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf

Visualizing Data Directives with Data and
Compute Regions
This code and following visualizations highlight the data locality of variables across CPU
memory space, the black line, and the GPU memory space, the green line. To note,
there is always an implied data region with any compute construct.

!$acc parallel

{!!! data region !!!

 {!** parallel region **!

 !$acc loop

 do i = 1,1000

 flux(i) = ...

 end do

 }!** end parallel region **!

}!!! end data region !!!

!$acc end parallel

Implicit Data Region with a Parallel Region

Thanks go to Pierre-François Lavallée and Thibaut Véry from IDRIS, France for this and
following images inspiraton. See their PRACE course

 presented July 2019.
Introduction to OpenACC and

OpenMP GPU

http://www.idris.fr/media/formations/openacc/gpu_directives.pdf

OpenACC Program without Data Managment

Without specifiying data movement, data transfers/allocations are performed by default at
each compute region as determined by provided clauses or compiler (see -
Minfo=accel output). For a program with many time steps, this could be 1,000s of
unecessary transfers!

OpenACC Program with Structured Data Region

By specifying data movement over an encapsulating data region, data actions are done
only at region entry and/or exit.

EXERCISE: Specify Variables in Data Regions
around Time Step Loop
Let's return to MiniWeather. We will now be using a new exercise source file

. This file has the !$acc parallel ... directives
completed from the previous session. Now, we want to add a data region around the main
time step loop section of the code near Line 128 (see TODO: MANAGE GPU DATA). This
will look like:

Only consider usage of copy() , copyin() , copyout() , and create() . Hints are
provided (CTRL / CMD + F GPU_data) to help define which clauses to use and variables
you need to consider. Note: Variables listed in GPU_data sections are used across the
reductions() , output() , and perform_timestep() subroutines called within
the main time step loop.

miniWeather_mpi_exercise2.F90

!$acc data ... ! Structured data region

 !$acc kernels

 ...

 !$acc end kernels

 call f_has_kernels()

!$acc end data

!!!!! OR !!!!!

!$acc enter data ... ! Unstructured data directive
 !$acc kernels

 ...

 !$acc end kernels

 call f_has_kernels()

!$acc exit data ... ! Unstructured data directive

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90#L128

1. Which clause do you use to ensure that data is availabile on the GPU and

updates the same data on CPU after GPU work is done?

2. Which clauses are optimal towards minimizing data movement in

MiniWeather?

3. If you used an unstructured data region, did this prevent data movement for

the structured compute kernels? Why or why not?

Once you are satisfied with your changes, make and run the new executable and see how
that has impacted performance.

1. Which clause do you use to ensure that data is availabile on the GPU and

updates the same data on CPU after GPU work is done?

2. Which clauses are optimal towards minimizing data movement in

MiniWeather?

3. If you used an unstructured data region, did this prevent data movement for

the structured compute kernels? Why or why not?

Once you are satisfied with your changes, make and run the new executable and see how
that has impacted performance.

In []:
make -C fortran/build openacc_test_ex2

1. Which clause do you use to ensure that data is availabile on the GPU and

updates the same data on CPU after GPU work is done?

2. Which clauses are optimal towards minimizing data movement in

MiniWeather?

3. If you used an unstructured data region, did this prevent data movement for

the structured compute kernels? Why or why not?

Once you are satisfied with your changes, make and run the new executable and see how
that has impacted performance.

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2 1e-13 4.5e-5

cd ../..

Data Directives - !$acc update ... and
the present() Clause
Unfortunately, the previous exercise introduced incorrect results. In some cases, you need
to guarantee the movement of data between the host and device in order to ensure correct
data is being processed. This uses the !$acc update ... directive:

!$acc update host(...) or !$acc update self(...) - Copies listed

data variables from the GPU device to the host CPU.

!$acc update device(...) - Copies listed data variables from the host CPU

to the device GPU.

The update directive is useful if you are processing data on the host side after the data
has been modified on the device side or vice versa. Note that !$acc update ...
cannot be added within a compute construct.

The present() clause will prevent an implicit data directive from being used on a parallel
region. It makes clear to the compiler the availability of data on the device and only checks
that data is present on the device. It also can make the code more readable to the
programmer. Whether or not the present() data is in sync with the data on the CPU
depends on recent computations or usage of !$acc update

Example Diagram for Data Movement Clauses

Reference Counters and Attachment Counters
All data clauses also utilize a reference counter for device variables or attachment
counter for device pointers. There are separate counters for structured and
unstructured data regions. Only when a variable's counter increments from 0 or is
reduced to 0 does a data action get performed. Example:

1. Enter first data region with copy(a,b) clause. a & b copied from CPU to GPU,

reference counters increment 0 -> 1

2. Kernel inside data region with copy(a,b) clause. No copy action but reference

counters increment 1 -> 2

3. Kernel exits and no copy is performed. Reference counters decrement from 2->1

4. First data region exits, a & b copied out and deallocated on GPU, reference

counters decrement 1 -> 0.

Essentially, counters track whether data is already present or not present on the GPU, ie
present = true if counter > 0 and informs data movement actions. This can avoid
unnecessarily moving data at each kernel. To ensure a data action is performed, the use of
!$acc update ... is recommended.

Another option is adding finalize for unstructured data regions only, ie !$acc exit
data ... with delete() , detach() , or copyout() . This forces the reference
counter to 0.

OpenACC and Reference Counters

Even when compute regions specify data movement clauses, data actions only happen
when the counter increments from 0 -> 1 or decrements 1 -> 0. In this example, the
variable a only has a data action performed on it at at data region entry and exit.

OpenACC and Update Directives

To ensure a data operation takes place, use !$acc update host() or !$acc
update device() outside a parallel compute region. Another option: add finalize
to clauses copyout() , delete() , or detach() in any structured or unstructured
data region. finalize will set the reference counter to 0.

EXERCISE: Specify Update Directives for MPI
Processes
Again using the exercise source file , we want to add a
update directives at the following locations to manage the send and receive buffers as well
as manage I/O output appropriately. Search for TODO: UPDATE DATA or go to:

MPI Buffers

[] Line 448

[] Line 460

Output I/O

[] Line 828 - hints provided

1. Look at the buffer variables that need to be passed between MPI tasks. When do

the data objects need to be updated on the host and device when doing an MPI

send and MPI receive?

miniWeather_mpi_exercise2.F90

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90#L440

Once you are satisfied with your changes, make and run the new executable and review
how that has impacted performance.

Once you are satisfied with your changes, make and run the new executable and review
how that has impacted performance.

In []:
make -C fortran/build openacc_test_ex2

Once you are satisfied with your changes, make and run the new executable and review
how that has impacted performance.

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2_update 1e-13 4.5e-5

cd ../..

Asynchronous Execution with async() and
wait() Clauses
One of the more important advanced OpenACC features is asynchronous execution. This
allows you to interface with CUDA Streams and manage directly the scheduling queues
the GPU uses to run kernels on the device in a defined sequence.

Synchronous Execution - Enabled by default for all directives

Host must wait for parallel compute regions and data regions/updates to

complete

All operations and parallel task units must run in a serialized sequence

Asynchronous Execution - Must be specified for every compatible directive

Host can perform work while the device GPU is also performing work

Data transfers can be scheduled and start processing before the data is

needed while other work is performed

Multiple parallel compute units can be scheduled on device to run in an

uninterrupted pipeline. Can avoid kernel startup/spindown scheduling

costs before being forced to wait/synchronize

So far, the CPU and GPU have performed synchronous execution. The CPU must wait to
synchronize with the completion of compute or data movement work on the GPU. This
often creates time gaps between compute kernels on the GPU (say during data movement
or kernel initialization) where the hardware is not being utilized.

If multiple asynchronous queues are used and there are available compute resources, it's
also possible to overlap compute kernels with each other in addition to data movement
kernels. Serialized execution of parallel kernels is not required.

Usage of async() and wait() Clauses
The async clause may appear on a parallel , serial , kernels , or data
construct, or an enter data , exit data , update , or wait directive. The wait
clause can appear on the same (except itself).

async(n) - Launches work asynchronously in queue n . If n is omitted, the

default queue is selected.

wait(n,m,...) - Blocks host (or blocks queue m if paired with async(m))

until all prior operations in queues n,m,... have completed. If an argument is

omitted, all queues must complete.

The optional argument n must be an integer value. An essentially limitless number of
queues/streams are able to be created. However, only 48 CUDA stream contexts (16 pre-
Volta) will be allowed to run concurrently.

Complex compute kernel task dependencies can be designed using clever queue
scheduling to fully saturate the GPU. However, limited time does not permit us to review
this here. Instead, please refer to section 7.1 of the

 or more briefly in Steve Abbott's
given at University of Tennessee's Innovation Computing Laboratory.

OpenACC Best Practices Programming
Guide, May 2021 Advanced OpenACC Lecture Slides

file:///Users/dhoward/Documents/reference/OpenACC-Best-Practices-Programming-Guide_May2021.pdf
http://icl.cs.utk.edu/classes/cosc462/2017/pdf/OpenACC_3.pdf

EXERCISE: Specify async Compute Kernels
and Place wait Barriers in MiniWeather
Again using the exercise source file , we want to add
async and wait at appropriate places in the code. Search for TODO: ASYNC ME or go
to:

[] Line 251

[] Line 304

[] Line 337

[] Line 366

[] Line 404

[] Line 435

[] Line 449

[] Line 461

[] Line 481

[] Line 503

miniWeather_mpi_exercise2.F90

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90#L440

1. Is it possible to set any of MiniWeather's compute kernels in thier own queues

or do dependencies between kernels prevent this?

2. How did asynchronous execution impact performance? Review previous

incremental changes to MiniWeather and record below the change in CPU

time. (Note: Select cell and press M or double click this cell to edit the table)

3. Enabling asynchronous execution only improved performance slightly. What

additional factors are likely contributing to this modest improvement? This is

best answered using a profiler via nsys profile -t openacc

./openacc_test_ex2 but feel free to speculate.
MiniWeather Edits CPU Time (s)

BaseLine (on V100) 26.1405

Data regions (d_mass wrong) XX

Update directives (d_mass fixed) XX

Async and wait XX

1. Is it possible to set any of MiniWeather's compute kernels in thier own queues

or do dependencies between kernels prevent this?

2. How did asynchronous execution impact performance? Review previous

incremental changes to MiniWeather and record below the change in CPU

time. (Note: Select cell and press M or double click this cell to edit the table)

3. Enabling asynchronous execution only improved performance slightly. What

additional factors are likely contributing to this modest improvement? This is

best answered using a profiler via nsys profile -t openacc

./openacc_test_ex2 but feel free to speculate.
MiniWeather Edits CPU Time (s)

BaseLine (on V100) 26.1405

Data regions (d_mass wrong) XX

Update directives (d_mass fixed) XX

Async and wait XX

In []:
make -C fortran/build openacc_test_ex2

1. Is it possible to set any of MiniWeather's compute kernels in thier own queues

or do dependencies between kernels prevent this?

2. How did asynchronous execution impact performance? Review previous

incremental changes to MiniWeather and record below the change in CPU

time. (Note: Select cell and press M or double click this cell to edit the table)

3. Enabling asynchronous execution only improved performance slightly. What

additional factors are likely contributing to this modest improvement? This is

best answered using a profiler via nsys profile -t openacc

./openacc_test_ex2 but feel free to speculate.
MiniWeather Edits CPU Time (s)

BaseLine (on V100) 26.1405

Data regions (d_mass wrong) XX

Update directives (d_mass fixed) XX

Async and wait XX

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2 1e-13 4.5e-5

cd ../..

Remaining Concepts Will Be Discussed with Time Remaining or Provided for Independent Review

Some great discussions on these advanced concepts are covered in John Urbanic's June
2021 GPU Programming Lectures and

. Nonetheless, most optimations using OpenACC at this level should include
profiling as part of any development cycle. We will cover usage of the Nsight Systems and
Nsight Compute profilers at later sessions.

Advanced OpenACC Using OpenACC With CUDA
Libraries

https://www.psc.edu/wp-content/uploads/2021/06/Advanced_OpenACC.pdf
https://www.psc.edu/wp-content/uploads/2021/06/OpenACC_Using_OpenACC_with_CUDA-Libraries.pdf

Routines and Functions Called from a GPU
Kernel - !$acc routine ... Directive
Compute regions are able to call external functions from within the kernel. However, the
external function needs to be declared to the compiler that it is a GPU kernel.

This is done using the !$acc routine ... directive. This directive should be placed in
the specification part of the routine it should apply to or you may place it in the calling
routine's/module's specification section as !$acc routine(name) where name is the
routine which it applies. Required with any !$acc routine ... directive is one of four
clauses:

seq - Specifies the routine should run in seq mode and is not parallel, should be

run sequentially

vector - Specifies the routine should run in vector mode and contains a

!$acc loop vector parallel construct or calls another vector routine

worker - Specifies the routine should run in worker mode and contains a

!$acc loop worker parallel construct or calls another worker routine

gang - Specifies the routine should run in gang mode and contains a !$acc

loop gang parallel construct or calls another gang routine

EXERCISE: Convert Inlined
sample_ellipse_cosine() to Function
Call
In , you can try specifying a GPU routine by searching for
TODO: TRY GPU ROUTINE OPTION or going to Lines 264 and 769. As a comment,
compilers often have non-optimal and sometimes even broken support for !$acc
routine Thus, perhaps consider instead inlining required routines into each
relevant parallel region.

miniWeather_mpi_exercise2.F90

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90#L266

make and run the new executable and evaluate if this changed performance in any way.

1. Which parallel mode (seq , vector , worker , or gang) is required to be set

for the function sample_ellipse_cosine ?

2. Do you see any other algorithms/groups of operations, perhaps at a vector

level or higher, you might write into its own subroutine/function? Try it out in

MiniWeather!

make and run the new executable and evaluate if this changed performance in any way.

1. Which parallel mode (seq , vector , worker , or gang) is required to be set

for the function sample_ellipse_cosine ?

2. Do you see any other algorithms/groups of operations, perhaps at a vector

level or higher, you might write into its own subroutine/function? Try it out in

MiniWeather!

In []:
make -C fortran/build openacc_test_ex2

make and run the new executable and evaluate if this changed performance in any way.

1. Which parallel mode (seq , vector , worker , or gang) is required to be set

for the function sample_ellipse_cosine ?

2. Do you see any other algorithms/groups of operations, perhaps at a vector

level or higher, you might write into its own subroutine/function? Try it out in

MiniWeather!

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2 1e-13 4.5e-5

cd ../..

OpenACC API Routines
OpenACC provides access to runtime library routines via use openacc module in
FORTRAN (or #include <openacc.h> header in C/C++). This allows executing many
features of OpenACC without directives, as well as a few important features not available
through directives. Two important routines are below. These are most relevant for Multi-
GPU Programming using CUDA aware MPI and will be discussed in future sessions.

1. acc_get_num_devices(acc_device_t dev_type) - Returns the integer

value of the number of devices connected to the host.

Use dev_type = acc_device_nvidia to enumerate NVIDIA devices.

2. acc_set_device_num(int idev, acc_device_t dev_type) - Sets for

the runtime which device to use, where 0 <= idev < dev_num .

See page 15 of the or page 89 of
 for a complete description of all possible API routines.

OpenACC API Guide, v2.7 OpenACC Full Specification,
v3.2

file:///Users/dhoward/Documents/reference/OpenACC-API-Guide_v2.7.pdf
file:///Users/dhoward/Documents/reference/OpenACC-Full-Specification_v3.2.pdf

OpenACC with CUDA and GPU Accelerated
Libraries
There is functionality to use manually developed CUDA kernels or CUDA libraries alongside
OpenACC. This is particularly useful if you have decided to develop optimal CUDA code for
a particularly expensive kernel or need to interface with a highly performant CUDA
Accelerated Library such as cuBLAS or cuFFT. Note however this will likely impact the
portability of your code with non-NVIDIA devices.

This use case is effectively explained in John Urbanic's
 presentation. Nonetheless, below are the most important concepts to remember:

Using OpenACC With CUDA
Libraries

https://www.psc.edu/wp-content/uploads/2021/06/OpenACC_Using_OpenACC_with_CUDA-Libraries.pdf

OpenACC cuTENSOR Example
Here is an example use case for the cuTENSOR library using OpenACC. The complete
FORTRAN can be found in NVIDIA's HPC SDK Documentation

. Notably, this code is portable with and without OpenACC using
!@acc .

Using cuTENSOR from
OpenACC Host Code

!@acc use openacc

!@acc use cutensorex

integer, parameter :: ni=1280, nj=1024, nk=960, ntimes=1

real(8) :: a(ni,nk), b(nk,nj), c(ni,nj), d(ni,nj)

call random_number(a)

call random_number(b)

a = dble(int(4.0d0*a - 2.0d0))

b = dble(int(8.0d0*b - 4.0d0))

c = 2.0; d = 0.0

!$acc enter data copyin(a,b,c) create(d)

!@acc istat = cutensorExSetStream(acc_get_cuda_stream(acc_async_sync))

!$acc host_data use_device(a,b,c,d)

do nt = 1, ntimes

 d = c + matmul(a,b)

end do

!$acc end host_data

!$acc update host(d)

https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/#cflib-tensor-oacc-host

Advanced Optimizations with cache , tile ,
and gang/worker/vector Clauses
The compiler typically does a good job choosing close to optimal arrangements of gang ,
worker , and vector parallel execution. You can review compiler choices in -
Minfo=accel output, basic profiling via NVCOMPILER_ACC_TIME=1 , or NSight
Systems/Compute profiling. However, further optimization can be explored by manualy
specifying optimization parameters. This process requires significant experimentation
with some intuition. Clauses not previously discussed are detailed below:

cache() - When included inside and at the top of a loop, specifies array elements

or subarrays that should be fetched into the highest level of cache, ie the shared

memory of the SM assigned to each gang.

tile(n,m,...) - Splits loops into two loops, outer tile loops and inner element

loops. Listed integer arguments specify the size of each tile and correspond to each

tightly nested loop. The first n corresponds to the innermost loop. If n = * , the

compiler has freedom to choose tile size.

A vector clause is applied to element loops

A gang clause is applied to tile loops

A worker clause is applied to element loops or to tile loops if the

vector clause is also present

Usage of cache()
If you have a an array or subarray of data to be accessed frequently within a compute
kernel, the cache() directive can direct the compiler to keep that portion of memory
nearby in a fast L1 shared memory cache for each gang. The size of this cache is limited
and dependent on the hardware (V100 - 96kB, A100 - 160kB) but can increase
performance if configured correctly. Example below:

Feel free to review Lashgar's and Baniasadi's
 in 2017 IJHPCN for a more in depth discussion from a compiler

perspective.

!$acc parallel loop gang vector

do i = 2, n-1

 !$acc cache(a(i−1:i+1))

 lower = i−1

 upper = i+1

 sum = 0;

 !$acc loop seq

 do j = lower, upper

 sum = sum + a(i);

 end do

end do

!$acc end parallel

Efficient Implementation of OpenACC cache
Directive on NVIDIA GPUs

http://www.ahmado.com/profile/lashgar/files/17ijhpcn.pdf

Target Specific Devices when Specifying Parallelism
When tuning performance using the following clauses, OpenACC should target specific
hardware or hardware types. To promote portability, consider pairing these clauses with
device_type(d_type) where
d_type = acc_device_nvidia , acc_device_radeon , acc_device_host , etc
depending on what OpenACC specification is implemented and what the compiler
recognizes.

For example, !$acc loop device_type(acc_device_nvidia)
vector_length(1024) device_type(acc_device_radeon)
vector_length(128) will apply distinct clauses for NVIDIA and AMD devices
respectively.

If neither device type is attached, then the compiler chooses its own arrangement of levels
of parallelism.

Usage of tile()
For multidimensional loops, tile() splits loops into blocks to distribute work across a
device. This is essentially opposite to collapse() which exposes parallelism and unrolls
loops into the largest possible units.

Where collapse() can often negatively impact data locality, tile() should be used
to increase data locality or encourage memory coalescing, improving performance in
some cases. Lastly, tiles can be executed simultaneously across distinct gangs.

!$acc kernels loop tile(2,2)

do x = 1, 4

 do y = 1, 4

 a(x,y) = a(x,y) + 1

 end do

end do

Usage of gang/worker/vector
Modifying levels of parallelism is more an art than a science, requiring intuition and
experimentation to find the optimal arrangement for a given kernel, which also depends on
kernel problem size. Sometimes, refactoring the kernel algorithm is recommended instead.
Here are some main points:

gang parallism is often best for outer loops and vector for inner loops.

vector should be of lengths 32 or multiples of 32 (NVIDIA) since each SIMT warp

is length 32.

The number/length of parallelism level should correlate with expected size of a loop

and should not be greater than the number of steps in that loop.

num_workers * vector_length is the number of threads in each CUDA block,

max 1,024 (NVIDIA).

More often than not, it is best to let the compiler decide the number of gangs.

Effective tuning can often be done by only adjusting the vector_length .

Usage of a worker loop is very rare and often reserved for when

vector_length is small, ie less than 128.

Coallescing memory access in vector loops is likely most important

consideration, ie threads access contiguous memory elements in matrix collumns in

FORTRAN (rows in C/C++).

Coallesced Memory Example in FORTRAN

The below example is uncoalesced after switching the i/j in the loops (this is opposite in
C/C++):

!$acc parallel

!$acc loop gang

do j = 1, ny

 !$acc loop vector

 do i = 1, nx

 A(i,j) = B(i,j) + C(i,j)
 end do

end do

!$acc end parallel

!$acc parallel

!$acc loop gang

do i = 1, nx

 !$acc loop vector

 do j = 1, ny

 A(i,j) = B(i,j) + C(i,j)
 end do

end do

!$acc end parallel

EXERCISE - Manually Tune Performance of
Select MiniWeather Kernels
Try out some of the previous performance tuning directives in

.

It is recommended to modify user parameters at Line 57 such that _NX=1024 ,
_NZ=512 , and _SIM_TIME=10 .

This sets up a sufficiently large problem to fill GPU SMs. Short simulation time promotes
rapid profile driven development. You might also try even larger domain sizes but runtime
will increase. Focus on just one kernel at a time (choose a random kernel or select the most
costly kernel. See from timing output via NVCOMPILER_ACC_TIME=1 in last few
exercises).

miniWeather_mpi_exercise2.F90

file:///Users/dhoward/Documents/workshop/fortran/miniWeather_mpi_exercise2.F90

make and run the new executable and record how performance changes with each
modification.

1. Can you beat the performance of the collapse() clause and the automatic

choices made by the compiler?

2. Share your results in Slack (specify kernel you chose) and see what others

were able to achieve.
MiniWeather Kernel L### CPU Time (s)

BaseLine (on V100) XX

clause - gang/vector XX

clause - tile(#,#,#) XX

clause - tile(*,*,*) XX

clause - vector_length(XX) XX

... XX

make and run the new executable and record how performance changes with each
modification.

1. Can you beat the performance of the collapse() clause and the automatic

choices made by the compiler?

2. Share your results in Slack (specify kernel you chose) and see what others

were able to achieve.
MiniWeather Kernel L### CPU Time (s)

BaseLine (on V100) XX

clause - gang/vector XX

clause - tile(#,#,#) XX

clause - tile(*,*,*) XX

clause - vector_length(XX) XX

... XX

In []:
make -C fortran/build openacc_test_ex2

make and run the new executable and record how performance changes with each
modification.

1. Can you beat the performance of the collapse() clause and the automatic

choices made by the compiler?

2. Share your results in Slack (specify kernel you chose) and see what others

were able to achieve.
MiniWeather Kernel L### CPU Time (s)

BaseLine (on V100) XX

clause - gang/vector XX

clause - tile(#,#,#) XX

clause - tile(*,*,*) XX

clause - vector_length(XX) XX

... XX

In []:
make -C fortran/build openacc_test_ex2

In []:
cd fortran/build

qcmd -A $PROJECT -q $QUEUE -l select=1:ncpus=1:ngpus=1 -l gpu_type=$GPU_TYPE -l walltime=60 -v NVCOMPILER_ACC_TIME=1 -- \

$PWD/check_output.sh $PWD/openacc_test_ex2 1e-13 4.5e-5

cd ../..

Suggested Resources
Matt Norman's

May 2021, and

Official - Not all updated features are

implemented yet by compatible compilers

If you want to dive deep into lower level control and optimization of GPU

performance, check out Oak Ridge National Lab's .

A Practical Introduction to GPU Refactoring in FORTRAN with

Directives for Climate

OpenACC Programming and Best Practices Guide Github

OpenACC 2.7 Quick Reference Guide

OpenACC 3.2 Full Standard Specification

CUDA Training Series

https://github.com/mrnorman/miniWeather/wiki/A-Practical-Introduction-to-GPU-Refactoring-in-Fortran-with-Directives-for-Climate
file:///Users/dhoward/Documents/reference/OpenACC-Best-Practices-Programming-Guide_May2021.pdf
https://github.com/OpenACC/openacc-best-practices-guide
file:///Users/dhoward/Documents/reference/OpenACC-API-Guide_v2.7.pdf
file:///Users/dhoward/Documents/reference/OpenACC-Full-Specification_v3.2.pdf
https://olcf.ornl.gov/cuda-training-series/https://olcf.ornl.gov/cuda-training-series/

