
T. Schulthess|

Thomas C. Schulthess

!1

Dusk of Moore’s Law: opportunities for
weather and climate modelling?

T. Schulthess|

Beginning of change: “Attack of the Killer Micros”

!2

Eugene Brooks (LLNL) @ SC90

T. Schulthess|

The good old days of tera- and petascale computing

!3

1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

Cray T3E with Alpha processors (RISC)

Cray XT5 with AMD Opteron processors (X86)

Cray 1, .. X/YMP: vector processors

http://www.top500.org

T. Schulthess| !4

$500,000,000
$2,000,000,000

$13,000
Source: Andy Keane @ ISC’10

T. Schulthess|

The good old days of tera- and petascale computing

!5

1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

Cray T3E with Alpha processors (RISC)

Cray XT5 with AMD Opteron processors (X86)

1,000-fold performance improvement per decadeCray 1, .. X/YMP: vector processors

KKR-CPA (MST)

LSMS (MST)

WL-LSMS (MST)

1,000x perf. improv. per decade seems
hold for multiple-scattering-theory(MST)-  

based electronic structure for materials science

http://www.top500.org

T. Schulthess|

“Only” 100-fold performance improvement in climate codes

!6

Source: Peter Bauer, ECMWFSource: Peter Bauer, ECMWF

T. Schulthess| !7

Has the efficiency of weather & climate
codes dropped 10-fold every decade?

T. Schulthess|

Floating points efficiency dropped from 50% on Cray Y-MP to
5% on today’s Cray XC (10x in 2 decades)

!8

Source: Peter Bauer, ECMWF

Cray Y-MP @ 300kW

Cray XT5 @ 7MW
Cray XT5 @ 1.8 MW

System size (in energy footprint) grew  
much faster on “Top500” systems

KKR-CPA (MST) LSMS (MST) WL-LSMS (MST)

IBM P5 @ 400 kW

IBM P6 @ 1.3 MW

T. Schulthess|

 Dennard Scaling

!9

L/�

W/�

tox/�

xd/�

�⇤NA ⇠ 1/�2

⇠ constant

n+ n+

source drain

GATE

WIRING

p substrate, doping

Voltage, V/�

SCALING
Voltage:
Oxide:
Wire width:
Gate Width:
Diffusion:
Substrate:

CONSEQUENCE:
Higher density:
Higher speed:
Power/ckt:
Power density:

V/�
tox/�

W/�

L/�

�⇤NA

xd/�

⇠ ↵2

⇠ ↵

Oxide layer  
thickness ~1nm

Source: Ronald Luijten, IBM-ZRL

The end of Robert H. Dennard (1974)

T. Schulthess| !10

T. Schulthess| !11

Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010

T. Schulthess|

PXCT imaging of Intel processor

!12

M Holler et al. Nature 543, 402–406 (2017) doi:10.1038/nature21698

T. Schulthess| !13

Source: Andy Keane @ ISC’10

for 8 GPUs, or $16k a piece

$500,000,000
$2,000,000,000

$13,000

T. Schulthess| !14

T. Schulthess|

Porting codes to GPUs, Xeon (Phi), ARM, etc.

!15

CUDA (C / C++ / Fortran) OpenCL

OpenACC OpenMP 4.x

T. Schulthess| !16

Architectural diversity is here to stay, because it is
a consequence of the dusk of CMOS scaling

(Moore’s Law)

What are the implications?

Complexity in software is one,  
but we don’t understand all implications

Physics of the computer matters more than ever

T. Schulthess|

The good news

!17

C++ 11, 14, (HPX-3/Kokkos), … 17, 20, …

C++ standard is evolving quickly and implementations follow!

T. Schulthess| !18

Who will pay for the implementation of
Fortran, OpenACC, OpenMP, …?

T. Schulthess|

The top ranking programming languages in 2017  
spectrum.ieee.org

!19

http://spectrum.ieee.org

T. Schulthess|

The top ranking programming languages in 2017  
spectrum.ieee.org

!20

http://spectrum.ieee.org

T. Schulthess| !21

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !22

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

Algorithmic description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !23

Physical model

Mathematical description

Algorithmic description

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering
Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !24

Imperative code

Compilation

Computer

Domain science & applied mathematics

Computer engineering

Physical model

Mathematical description

H = −t
∑

⟨ij⟩,σ

c†iσcjσ + U
∑

i

ni↑ni↓

Algorithmic description
Gc({si, l}k+1) = Gc({si, l}0) + [a0|a1|...|ak] × [b0|b1|...|bk]t

Gc({si, l}k+1) = Gc({si, l}k) + ak × b
t
k

!24

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !25

Physical model

Algorithmic description

Compilation

Computer

Imperative code
lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !26

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !27

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Physical model

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !28

Physical model

Algorithmic description

Imperative code

Compilation

lap(i,j,k) = –4.0 * data(i,j,k) +
 data(i+1,j,k) + data(i-1,j,k) +
 data(i,j+1,k) + data(i,j-1,k);

Domain science & applied mathematics

Computer engineering

370 NATURE PHYSICS | VOL 11 | MAY 2015 | www.nature.com/naturephysics

COMMENTARY | FOCUS

Whereas this long-term sustained
exponential growth had profound impact
on the productivity of scientists and opened
many new avenues in physics research,
not all types of problems in scientific
computing have seen the same performance
improvements. For example, the sustained
performance of climate codes, as documented
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over
approximately the same period as the
Top500 project, has improved only by
a factor of 100 per decade (Peter Bauer,
manuscript in preparation). This is still an
exponential growth, but it demonstrates
the significant decrease in efficiency for
software applications in some fields. This
is more important, as meteorological and
climate simulations have been around since
the dawn of modern computing1. They rely
on complex, but typically well-engineered
computer codes that have been designed to
run on the top supercomputing systems. If
experts use computers inefficiently, what does
this say about the applications developed by
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in
physics today. I try to analyse the challenges
in writing efficient scientific software and
examine possible ways in which physicists
can deal with the rapidly increasing
complexity of computer architectures. To do
so it is important to first recall the main uses
of computing in physics.

Imperative code

Compilation

Physical modelMathematical description

Algorithmic description

Computer

Domain science and applied mathematics

Computer engineering

= − ∇p + ρg − 2Ω×(ρv) + F

= − (cpd /cvd��p∇· v + (cpd /cvd−1)Qh

= p· +Qh

= − ∇ · Fv − (Il + I f)
= ∇ · (P l,f + F l,f) + Il,f

= p[Rd (1+(Rυ/Rd−1) qυ− q l−qf)T]−1

ODS�L�M�N�� �±����
�GDWD�L�M�N���
GDWD�L���M�N����GDWD�L���M�N����
GDWD�L�M���N����GDWD�L�M���N��

Wind ρv·

Pressure p·

Water ρq· υ

ρq· l,f

Density ρ

Temperature ρcpd T·

Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance)
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations),
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented
in a program (for example, stencil code), and subsequently compiled into machine code that executes
on a canonical computer architecture. The green line marks the separation of work. The physical
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright,
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern
computing, modelling and simulation
were used in physics in two ways. The
first and best known (which we call the
traditional way) is the use of computers
to solve challenging theoretical problems
that have no known analytical solution.
In this case, the theory is well understood
and the governing equations are solved
numerically with elaborate computational
methods to make quantitative and verifiable
predictions. Sometimes the numerical
solution of a theoretical problem may lead
to new insights in its own right, as was the
case with the discovery of the fluctuation
theorem2. This was an argument for defining
computer simulations as a third, independent
pillar of science, complementing theory
and experiment3. For our purpose, this
distinction is not necessary, as from a
computational point of view we are still
solving known equations. The simulations are
carefully planned — that is, the mathematical
analysis and algorithms are well known and
the elaborate computer codes, as in the case
of climate simulations, have been developed
and optimized. Scientists, and physicists
in particular, will not shy away from great
efforts in using cutting-edge technologies
to solve such problems, and they will use
imperative programming languages such as
C or FORTRAN with machine-level codes to
squeeze every last bit of performance out of a
computing system.

The second, and profoundly different, use
is the analysis of experimental data with the
help of modelling and simulations before the
theory and governing equations are known.
This is essentially what Johannes Kepler did
when he analysed Tycho Brahe’s planetary
orbit data with heliocentric elliptical models
to discover the three famous laws that
now carry his name — Newton’s theory
of gravitation, which explains Kepler’s
laws, came later. Scientists today use
computers to rapidly prototype models,
thereby assimilating in a matter of seconds
or minutes many orders of magnitude
more data than Kepler did in months of
laborious manual computations. Along with
the development of electronic computing
came large experimental facilities, which
significantly increased the importance of
systematic exploratory tools for data analysis.
This lead to a substantial improvement of
mathematical algorithms over the past few
decades, which, together with the emergence
of social media on the World Wide Web,
have made this exploratory use relevant
to areas outside of natural sciences, for
instance in economics and social sciences.
These have, in turn, led to the argument that
a fundamentally new, fourth paradigm of
science is emerging: ‘data science’3. For our
present purpose, however, this distinction
is again not necessarily important. But, for
this second exploratory use of modelling and
simulation scientists use more descriptive
programming languages like Python or
Ruby, and they rely on existing libraries even
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary
purposes: one is to specify the computation
and the other is to manage computer
resources. Most scientists are familiar with
the former, whereas the latter is considered
to be primarily the concern of computer
engineers. The distinction is important as
it allows a clear separation of concerns:
scientists only need to know about the
complexity of models and mathematics, and
system engineers only need to focus on the
complexity of the computer.

In this ideal case, the programming
environment allows scientists to specify
the computational tasks in terms of
human-readable equations — descriptive
programming — that are independent of the
underlying system, which is portable across
many platforms. The Python programming
language, with its many associated libraries
and tools, provides such an environment,
but at the cost of performance. When the
computation is big and has to be scaled,
performance does matter. In this case
scientists have the choice of algorithms

© 2015 Macmillan Publishers Limited. All rights reserved

Mathematical description

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess| !29

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

dynamic environment 
for model develop.

tools for 
high-performance  

scientific computing

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess|

MeteoSwiss’ performance ambitions in 2013

!30

1

5

10

15

20

25

30

35

40

Constant budget for investments and operations

24
x Ensemble with multiple forecasts

Grid 2.2 km ! 1.1
km

10
x

Requirements from MeteoSwiss
Data assimilation6x

We need a 40x improvement between 2012 and 2015 at constant cost

?

T. Schulthess|

COSMO: old and new (refactored) code

!31

main (current / Fortran)

physics
(Fortran)

dynamics (Fortran)

MPI

system

main (new / Fortran)

physics
(Fortran) 

with OpenMP /
OpenACC

dynamics (C++)

MPI or whatever

system

Generic
Comm.
Library

boundary
conditions &
halo exchg.

stencil library

X86 GPU

Shared
Infrastructure

T. Schulthess| !32

September 15, 2015

Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell

“Piz Kesch”

T. Schulthess|

Where the factor 40 improvement came from

!33

1

5

10

15

20

25

30

35

40

Constant budget for investments and operations

Grid 2.2 km ! 1.1
km

24
x Ensemble with multiple forecasts

Data assimilation

10
x

1.7x from software refactoring (old vs. new implementation on x86)

2.8x Mathematical improvements (resource utilisation, precision)

2.8x Moore’s Law & arch. improvements on x86

2.3x Change in architecture (CPU ! GPU)

1.3x additional processors

Requirements from MeteoSwiss

6x

Investment in software allowed mathematical improvements and change in architecture

There is no silver bullet!

Bonus: reduction in power!

T. Schulthess|

Setting a new baseline for atmospheric simulations

!34

The state-of the art implementation of COSMO running at
most weather services on multi-core hardware.

The refactored version of COSMO running at MeteoSwiss
on multi-core or GPU accelerated hardware.

~10x

T. Schulthess| !35

Science applications using a descriptive
and dynamic developer environment

Physical model
Mathematical description

Algorithmic description

Imperative code

Architecture 1

Compiler frontend

Optimisation / low-level libraries / runtime

Architecture specific backends

Architecture 2 Architecture N…

Multi-disciplinary  
co-design of tools,
libraries,
programming
environment

dynamic environment 
for model develop.

tools for 
high-performance  

scientific computing

Schulthess, Nature Physics, vol 11, 369-373 (2015)

T. Schulthess|

GridTools Framework

!36

Stencil
DSL

grids

Arch.
backend

High-level
language
frontend

Boundary
conditions

Domain
decomp.

storage

Car-
tesian

X86

GridTools
native

COSMO @ MeteoSwiss

T. Schulthess| !37

~1km

~50m

Tri-diagonal solve

k

i

j

Store fields in (i,j,k) or (k,i,j) order?

No performance hotspots

This depends on the architecture

T. Schulthess| !38

Stencil
DSL

grids

Arch.
backend

High-level
language
frontend

Boundary
conditions

Domain
decomp.

storage

Car-
tesian

X86

GPU /
CUDA

Xeon
Phi

ARM

GridTools
native

XXX Grid

YYY
Backend

COSMO @ MeteoSwiss

Besides storage order, there are several
other optimisation techniques (e.g. loop/
stencil fusion) where details depend on

architecture specifics

T. Schulthess|

Exploring Intel Xeon Phi (KNL) and NVIDIA’s P100

!39

Horizontal diffusion Vertical advection

Source: Felix Thaler, CSCS

T. Schulthess| !40

Stencil
DSL

grids

Arch.
backend

High-level
language
frontend

Boundary
conditions

Domain
decomp.

storage

Car-
tesian

Icosa-
hedral

Octa-
hedral

Unstruc
tured

Cube-
sphere

X86

GPU /
CUDA

Xeon
Phi

ARM

GridTools
native

Atlas

Kokkos

XXX Grid

YYY
Backend

COSMO @ MeteoSwiss
NICAM @ TiTech & RIKEN

ICON-Ocean @ MPI-M
Atlas @ ECMWF

T. Schulthess|

Toolchain

!41

GT4Py (Python)

GT4F (Fortran)

GT4Clang (C++)

Hi
gh

-le
ve

l in
ter

me
dia

te
re

pr
es

en
tat

ion

Co
de

 g
en

er
at

or

Op
tim

ise
rs

Do
m

ain
 sp

ec
ifi

c c
he

ck
er

s

Extension
(e.g. DAPPY)

Gr
idT

oo
ls

C/
Fo

rtr
an

 (O
MP

)

• read before write
• missing boundary 

update
• data dependency 

race conditions
• out of bounds 

stencil access

• Software  
managed caches

• Full vertical  
parallelisation

• Stage fusion
• Data locality  

exploit
• Strong/weak  

scaling optimiser

• Native C/C++/Fortan
• Optimised GridTools Generator (C++)

T. Schulthess| !42

Stencil
DSL

grids

Arch.
backend

High-level
language
frontend

Boundary
conditions

Domain
decomp.

storage

Car-
tesian

Icosa-
hedral

Octa-
hedral

Unstruc
tured

Cube-
sphere

X86

GPU /
CUDA

Xeon
Phi

ARM

GridTools
native

Atlas

Kokkos

Fortran

Python

CLANG

XXX Grid

YYY
Backend

T. Schulthess|

The GridTools Team

!43

Carlos Osuna
Other Grids, CUDA
Product Owner

Chritopher Bignamini
Dycore (no full time)

Felix Thaler
KNL Backend

Hannes Vogt
Dycore Lead, CUDA
Scrum Master

Mauro Bianco
Stencil Composition
Technical Lead

Nora Abi Akar
ARM Backend

Stefan Moosbrugger
KNL, Storage

Anton Afanasyev
Software Architect

T. Schulthess| !44

What exactly is
“exascale” computing?

T. Schulthess| !45

Exascale is not just ~103 PF

• Delivers 50x the performance of today’s ~20 PF systems, supporting application that
deliver high-fidelity solutions in less time and address problems of greater complexity

• Operates in a power envelope of 20-30 MW
• Is sufficiently resilient (perceived full rate: <= 1/week
• Includes a software stack that supports a broad spectrum of applications and workloads

A capable exascale computing system requires an entire computational ecosystem that:

Paul Messina, US-DoE
7 Exascale Computing Project, www.exascaleproject.org

Transition to higher trajectory with advanced architecture

Time

Computing
Capability

2017 2021 2022 2023 2024 2025 2026 2027

10X

Evolution of today’s architectures is on this trajectory

5X

First exascale
advanced architecture
system

Capable exascale
systems

7 Exascale Computing Project, www.exascaleproject.org

Transition to higher trajectory with advanced architecture

Time

Computing
Capability

2017 2021 2022 2023 2024 2025 2026 2027

10X

Evolution of today’s architectures is on this trajectory

5X

First exascale
advanced architecture
system

Capable exascale
systems

co
mp

uti
ng

 ca
pa

bil
ity Transition to higher trajectory  

with advanced architecture

T. Schulthess| !46

But what is the goal for exascale
computing, and the baseline?

T. Schulthess| !47

T. Schulthess| !48

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Computational power drives spatial resolution

TCo1279	
L137	

TL1279	
TL799		
L91	TL511	

L60	
TL319	Tq213	L31	

TCo7999		
L180	

Tq106	L19	
Tq63	L16	

1km	

9km	

16km	
25km	

39km	

125km	
63km	

208km	

5km	
TCo1999		
L160	

Can the delivery of a 1km-scale
capability be pulled in by a decade?

T. Schulthess| !49

Let’s assume for a moment we can
build on the CSCS-MCH experience

T. Schulthess|

Near-global climate simulation at 1km resolution: establishing
a performance baseline on 4888 GPUs with COSMO 5.0

!50

 0.01

 0.1

 1

 10

 100

 4888 10 100 1000

SY
PD

#nodes

Δx = 19 km, P100
Δx = 19 km, Haswell
Δx = 3.7 km, P100
Δx = 3.7 km, Haswell
Δx = 1.9 km, P100
Δx = 930 m, P100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Near-global climate simulation on 4,888 GPUs at 1 km resolution SC’17, November 2017, Denver, CO

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4400 1 10 100 1000

tim
e

[s
]

#nodes

128x128
160x160
192x192
256x256

(a)Weak scalability on the hybrid P100 Piz Daint
nodes, per COSMO time step of the dry simula-
tion.

 0.01

 0.1

 1

 10

 100

 4888 10 100 1000

SY
PD

#nodes

∆x = 19 km, P100
∆x = 19 km, Haswell
∆x = 3.7 km, P100
∆x = 3.7 km, Haswell
∆x = 1.9 km, P100
∆x = 930 m, P100

(b) Strong scalability on Piz Daint. (Filled sym-
bols) On P100 GPUs, and (empty symbols) on
Haswell CPUs, using 12 MPI ranks per node.

h�x i #nodes �t [s] SYPD MWh/SY gridpoints
930m 4,888 6 0.043 596 3.46⇥1010
1.9 km 4,888 12 0.23 97.8 8.64 ⇥ 109
47 km 18 300 9.6 0.099 1.39 ⇥ 107

(c) Time compression (SYPD) and energy cost (MWh/SY)
for three moist simulations. At 930 m grid spacing ob-
tained with a full 10d simulation, at 1.9 km from 1,000
steps, and at 47 km from 100 steps

Figure 6: (a) Weak and (b) strong scalability results and (c) summary of the time compression achieved in terms of SYPD.

TaihuLight system. As argued in Section 3, such large timesteps are
not admissible for global climate simulations resolving convective
clouds (even when using implicit solvers), and a maximum timestep
of 40-60 s would very likely be needed; this will decrease their SYPD
by a factor 4 to 6. Furthermore, their simulation covers only 32% of
the Earth’s surface (18�N to 72�), but uses twice as many levels; this
would further reduce their SYPD by a factor 1.5. Thus we estimate
that the simulation of Yang et al. [55] at 2 km would yield 0.093 to
0.064 SYPD when accounting for these di�erences. In comparison,
our simulation at 1.9 km yields 0.23 SYPD, i.e. is faster by at least a
factor 2.5. Note that this estimate does not account for additional
simpli�cations in their study (neglection ofmicrophysical processes,
spherical shape of the planet, and topography). In summary, while
a direct comparison with their results is di�cult, we argue that our
results can be used to set a realistic baseline for production-level
GCM performance results and represent an improvement of at least
a factor 2 with respect to previous results.

6.4 Energy to Solution
Based on our power measurement (cf. Section 5.3) we provide the
energy cost of our full scale simulations (Table 6c) using the energy
cost unit MWh per simulation year (MWh/SY). The 10-day-long
simulation at 930 m grid spacing running on 4,888 nodes requires
596 MWh/SY while the cost of the simulation at 1.9 km on 4,888
nodes is 97.8 MWh/SY. For comparison the coarse resolution at
47 km simulation on a reduced number of nodes (18) requires only
0.01 MWh/SY.

Again, we attempt a comparison with the simulations performed
by Yang et al. [55]. The Piz Daint system reports a peak power
draw of 2,052 kW when running the HPL benchmark. The sus-
tained power draw when running the 930 m simulation amounted
to 1,059.7 kW, thus 52% of the HPL value. The TaihuLight system re-
ports a sustained power draw for the HPL benchmark of 15,371 kW
[2]. While Yang et al. [55] do not report power consumption of their
simulations, we expect the simulations on Piz Daint to be at least 5
times more power e�cient, even when assuming similar achieved
SYPD (see above).

6.5 Data Transfer E�ciency E
To estimate a solution for the optimization problem in Eqn. (5), we
use the METIS library [32]. The results are presented in Table 2. The

level METIS Q COSMO D no merging D̂
registers 1.51 · 109 (20240) 1.72 · 109 (20160) 2.6 · 109 (112618)
sh. mem. 64,800 (245) 107,600 (255) 229,120 (2649)
L2 cache 1,023 (93) 1,160 (149) 2,341 (1192)

Table 2: Data movement bounds (Equation 5) based on CDAG parti-
tions. The number of partitions is shown in brackets.

metric optimized not optimized ratio
time meas. per step 0.16s 0.25s 0.64
estimated E 0.67 0.44 0.65

Table 3: Performance model veri�cation results.

METIS Q column is the value obtained from METIS partitioning
library and is an estimation of the lower bound Q . The COSMO D

column is the total communication volume for COSMO’s optimized
partitioning. The nomerging D̂ column shows the communication
volume needed if no merging was performed like in the original
Fortran version of the code.

The model shows how e�cient the COSMO tiling is – it achieves
80%, 74% and 89% of the best register, shared memory and L2 cache
data locality, respectively. Our sophisticated nested tiling schemes
result in close to optimal data reuse. Because on the P100, all mem-
ory accesses to/from DRAM go through the L2 unit, we focus on
the e�ciency of this unit such that

E = QL2
DL2
· B
B̂

= 0.88 · 0.76 = 0.67,

whereDL2 andQL2 stand for estimated number of main memory
operations and its lower bound, respectively.

The model also can estimate the e�ciency of our optimizations.
Assuming that we can reach the peak achievable bandwidth B̂ if
we perform no data locality optimizations (D̂), then:

Eno_opt =
QL2

D̂L2
· B̂
B̂

= 0.44

To validate the model results, we have conducted a single-node
runs with and without our data locality optimizations. The results
show the high precision of our model (Table 3).

Metric: simulated years per wall-clock day

2.5x faster than Yang et al.’s 2016 Gordon Bell winner run on TaihuLight!

Fuhrer et al., Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-230, published 2018

https://doi.org/10.5194/gmd-2017-230

T. Schulthess|

“Exascale” goal for global weather and climate runs

!51

T. Schulthess|

The baseline for COSMO-global and IFS

!52

T. Schulthess|

Memory use efficiency

!53

0

100

200

300

400

500

600

0.1 1000

M
em

or
y

BW
 (G

B/
s)

Data size (MB)
28.2 1,00010010.1

362

10

COPY (double)
a[i] = b[i]

GPU STREAM (double)
a[i] = b[i] (1D)

AVG i-stride (float)
a[i]=b[i-1]+b[i+1]

5-POINT (float)
a[i] = b[i] + b[i+1] + b[i-1] +

b[i+jstride] +b[i-jstride]

COPY (float)
a[i] = b[i]

MUE = I/O e�ciency · BW e�ciency =
Q

D

B

B̂

Necessary data transfers

Actual data transfers

Fuhrer et al., Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-230, published 2018

Achieved BW

Max achievable BW

0.88

0.76

= 0.67

2x lower than peak BW

https://doi.org/10.5194/gmd-2017-230

T. Schulthess|

How realistic is it to overcome 65-fold shortfall of a grid-based
implementation like COSMO-global?

!54

0

100

200

300

400

500

600

0.1 1000

M
em

or
y

BW
 (G

B/
s)

Data size (MB)
28.2 1,00010010.1

362

10

COPY (double)
a[i] = b[i]

GPU STREAM (double)
a[i] = b[i] (1D)

AVG i-stride (float)
a[i]=b[i-1]+b[i+1]

5-POINT (float)
a[i] = b[i] + b[i+1] + b[i-1] +

b[i+jstride] +b[i-jstride]

COPY (float)
a[i] = b[i]

 0.01

 0.1

 1

 10

 100

 4888 10 100 1000

SY
PD

#nodes

Δx = 19 km, P100
Δx = 19 km, Haswell
Δx = 3.7 km, P100
Δx = 3.7 km, Haswell
Δx = 1.9 km, P100
Δx = 930 m, P100

1. Icosahedral grid (ICON) vs. Lat-long/Cartesian grid (COSMO)
2x fewer grid-columns
Time step of 10 ms instead of 5 ms 4x

2. Improving BW efficiency

Improve BW efficiency and peak BW 1.5x
(results on Volta show this is realistic)

3. Weak scaling

4x possible in COSMO, but we reduced  
available parallelism by factor 2 2x

4. Remaining reduction in shortfall 5x
Numerical algorithms (larger time steps)
Further improved processors / memory

But we don’t want to increase the footprint of the 2021 system beyond “Piz Daint”

T. Schulthess| !55

The main conclusions
• Change is nothing new to HPC, nor is the reluctance to adapt to change

• “Killer micros”, memory wall, end of Dennard Scaling and multi-core, GPU

• CMOS scaling tapering due to constraints in device physics and fabrication

• Architectural improvements & diversity seem a good option to improve performance

• New opportunities for materials science and device physics?

• Fundamental challenge to software / application development

• Domain specific libraries and frameworks are a way out

• GridTools framework with successful demonstration to COSMO @ MeteoSwiss

• “Exascale” computing, if properly defined and pursued, could give us ~1km scale
horizontal resolution in simulation with good throughput

Great motivations to clean up our software stack!

T. Schulthess| !56

Collaborators

Tim Palmer (U. of Oxford)

Christoph Schar (ETH Zurich)

Oliver Fuhrer (MeteoSwiss)
Peter Bauer (ECMWF)

Bjorn Stevens (MPI-M)

Torsten Hoefler (ETH Zurich)Nils Wedi (ECMWF)

