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Energy Exascale Earth System Model (E3SM) – Multiscale 
Modeling Framework

• E3SM

– Branched as “ACME” from CESM a few years ago

– Changed names from ACME to E3SM recently

– Coupling of five main models: Atm, Ocn, Land, Land Ice, Sea Ice

– Targeted to hi-res DOE climate Grand Challenge questions

• E3SM Multi-Scale Modeling Framework (MMF)

– Cloud resolving scales (dx=1km) will require about 22,000x more computation

– MMF is a compromise: each global model column has its own hi-res Cloud 
Resolving Model (CRM) on a reduced domain

– Global model nudges dynamical and moist variables in the CRM

– CRM provided a single column of forcing to the global model

– CRM retains a persistent internal state from one time step to the next
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MMF vs Taditional Simulation

• Advantages

– Traditional E3SM spends roughly 50% runtime in MPI in production runs

– Traditional E3SM dynamics spends 90% runtime in latency-dominated MPI

– CRMs do not communicate directly with one another

– Thus, >90% of runtime has no MPI

– Code is only about 30k lines

• Challenges

– Original code was not well structured for correctness or threading

– Most subroutines floated around outside modules (no parameter checking)

– Most data was “use”d, not passed (hard to thread, dependencies unclear)

– The loop over multiple CRM instances was outside the CRM code

– SYPD throughput still enforces very little work per node (kernels are very small)
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First Order of Business: Clean Up the Code

• Put all subroutines in modules, switch some “use” to parameters to 
aovid circular module dependency

– Found several bugs with wrong number / type of parameters passed

• Allocate / deallocate module-level data to get off the stack

– Some ghost in the machine bugs with PGI were resolved by this

– Valgrind complained slightly less about the stacksize

• Replace “equivalence” statements with pointers

• F90-ize the borrowed ECMWF FFT routines

• Pass the entire E3SM-MMF code through valgrind

– It now runs clean
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Next: Create Fast, High-Coverage Test Suite

• Finding a bug is much faster if only 10 LOCs change could’ve caused it

• Created two low-res tests to cover all the code we care about

– Both tests run at 80km grid spacing, 30 vertical levels for one model day

– Test 1: 1-mom micro, 3-D CRM

– Test 2: 2-mom micro, active aerosols, 2-D CRM

– Compiling with GNU, total test time of 10 minutes on my desktop

• Create two baseline files per test

– O0 and O3 to get the feel for how bit-level changes propagate over a model day

– Then, compare refactored file against the diff between O0 and O3
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Next: Push Loop Across CRMs Down the Callstack

• Requires redimensioning all module and high-level subroutine data to 
include another dimension (“ncrms”)

• Chose to make ncrms the slowest-varying dimension

– Makes performance impact on CPU minima

– Makes certain sub-cycling easier to handle

• Changed 20K LOC in a single GitHub Pull Request

– Passed bit-for-bit checks in the E3SM test system

– We managed to stay off of the “gitlost” Twitter feed
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Next: Find a Way to Unify OpenACC and OpenMP

• We cannot continue to be exposed to a single compiler’s bugs

• An OpenACC / OpenMP solution enables PGI, XL, Cray, and GNU*

• I’m not good with parsing or writing pseudo-compilers

– So, we opted for a relatively simple solution using the CPP

• OpenMP 4.5 and OpenACC’s “parallel loop” share much in common

– Ad hoc unified directive from the intersection of OpenMP 4.5 and OpenACC

• Requires variadic macro functions in CPP but nothing else

– PGI anc XL support full CPP in .F* files; GNU doesn’t yet; Intel says “never!”

• Requires you to explicitly mention data flow in each kernel

– This is tedious but useful for robustness

– You don’t always know your routine will be called with data already on the GPU
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Mapping between OpenACC and OpenMP 4.5

OpenACC

• !$acc parallel loop

• gang (Loop across GPU’s SMs)

• worker (Outer loop within SMs)

• vector (Inner loop within SMs)

• copyin(), copyout(), copy()

• !$acc data, !$acc end data

• !$acc enter data, !$acc exit data

• create(), delete()

• !$acc update host(), !$acc update device()

• async(id), wait(id) *

OpenMP 4.5

• !$omp target teams

• distribute

• parallel do

• simd

• map(to:), map(from:), map(tofrom:)

• !$omp target data, !$omp end target data

• !$omp target enter data, !$omp target exit data

• map(alloc:), map(release:)

• !$omp target update to()
!$omp target update from()

• nowait, taskwait *

*Asynchronous behavior is very different
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Differences b/t OpenMP 4.5 & OpenACC async Engines

• Likely the biggest difference between OpenMP 4.5 and OpenACC

• OpenACC mirrors the simplistic CUDA “stream” ideology

– Everything is synchronized within streams, independent between streams

• OpenMP is more cumbersome, yet more capable

– All asynchronous data and kernel clauses coordinate with “depend()” clauses

– An op wih depend(in:var) must wait for the previous op’s depend(out:var)

– Theoretically, OpenMP compilers create GPU streams under the hood based on 
your explicitly given dependencies

• Since we decided to mention data per-kernel, our CPP-generated 
directives can use this info to create appropriate dependencies

• However, we must have separate data clauses between kernels and 
data statements (they have different dependencies)



11 Introduction to OpenACC

Kernel Approaches for GPU porting

• Parallel dimensions

– crm_nx, crm_ny, crm_nz (x,y,z dimensions of CRM)

– ncrms (Number of CRM instances per compute node)

• In general, tightly nest and collapse all data-parallel loops

– We don’t know a priori what nx, ny, nz, and ncrms will be

– Collapsing gives the most flexible performance across configurations

• Use “atomic” for race conditions (mostly in the vertical dimension)

– Atomic used to perform awfully on K20x, no hardware double precision atomics

– But Volta does very well with them

– Prefix / cumulative sum must still be isolated and extracted into its own loop

• Push intermittent if-statements down the loop stack to allow collapsing

– This typically ruins vectorization on the CPU
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Data and Asynchronous Approaches for GPU porting

• Allocate and deallocate data on the GPU in each routine

– You can’t guarantee each CRM call will have the same “ncrms”

• Use “nested” data statements with the “present or” logic in Open*

– All data statements have an implied “do this unless it’s present”

– If the data is allocated, nothing happens, so you don’t have performance penalty

• Use asynchronous execution liberally

– NOTE: This is not to overlap CPU and GPU computation

– This is only to hide two things: (1) Kernel launch latencies; (2) cudaMalloc[Host]

• We have very small workloads in realistic simulations; high latencies

– By launching asycnhronously, we don’t see most of this latency

• Asynchronous launching makes correctness more difficult to maintain
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Miscillaneous Stuff

• Managed memory performs poorly for small kernels with PGI

– Allocations are excessively expensive, pool allocator is not performant

– Gaps between kernels increase by 5-10x with Managed memory turned on

• XL currently cannot pin memory by default (poor CPU-GPU bandwidth)

– You currently have to use the CUDA FORTRAN “pinned” attribute

– They’re working on a compiler flag to fix this

• With all-asynchronous execution, cudaMalloc[Host] costs are hidden

• Currently redoing HOMME tracers/dynamics port with unified directives

• Going to complete RRTMGP radiation port in unified directives

– RRTMGP is already ported to the E3SM-MMF code under ECP
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Obligatory Performance Slide

• Previous OpenACC port gave expected GPU bandwidth improvement

– IF we have enough work per GPU

– We’ve since cleaned the code and are currently diversifying compiler support

• However, we do not have enough work per node in hi-res climate

– In realistic simulations, we only got about 4x improvement on Summit

– Since MPI isn’t involved, this is solely due to small workload issues
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Current and Future Challenges for Climate Modeling

• Our 2,000x throughput requirement is starving hardware for work

– Each 2x horizontal refinement needs 8x more work (time step reduction)

– But we only have 4x more data to work on

– Thus, workload per node cuts in half for each 2x refinement

– Eventually MPI message time dominates, and accelerators starve for work

• We really need to consider creative ways to improve realism without 
reducing per-node workloads

– MMF is helpful to overcome the MPI problem but doesn’t solve workload problem

– Traditional numerics improvements can give 2-10x help but nothing fundamental

– Deep Learning surrogate models and physics-based parameterizations may 
have a positive impact on intelligent dimensionality reduction

– Simplified physics that directly target regional cloud-resolving grids

– Direct ensemble-based approaches that relax the throughput requirement


