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High Resolution Models
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High Resolution Models
Ensembles
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Sensor data
Coupled models
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Big Data: The Vs

High-throughput Analysis
Real-time predictive models
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Big Data: The Vs

Climate Change
Clean Energy
Disaster Prediction
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Sources: Lesk, Berkeley SIMS, Landauer, EMC, TechCrunch, Smart Planet
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Every two days we create as much data as we did from the beginning of mankind 
until 2003! 
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How many trees does it take to print out an Exabyte?
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1 Exabyte = 1000 Petabytes = could hold approximately
500,000,000,000,000 pages of standard printed text

It takes one tree to produce 94,200 pages of a book

Thus it will take 530,785,562,327 trees to store an Exabyte of data

In 2005, there were 400,246,300,201 trees on Earth

We can store .75 Exabytes of data using all the trees on the entire planet.

Sources: http://www.whatsabyte.com/ and http://wiki.answers.com

How many trees does it take to print out an Exabyte?
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Feynman Diagrams (Data Analytics)

Feynman: “What I am really try to do is bring birth to clarity, which is really 
a half-assedly thought-out-pictorial semi-vision thing. I would see the 
jiggle-jiggle-jiggle or the wiggle of the path. Even now when I talk about 
the influence functional, I see the coupling and I take this turn - like as if 
there was a big bag of stuff - and try to collect it in away and to push it. 
It's all visual. It's hard to explain.”

James Gleick, The Life and Science of Richard Feynman, Vintage Books, 
New York, 1992.
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Feynman Diagrams

Feynman: "In certain particular problems that I have done it was necessary 
to continue the development of the picture as the method before the 
mathematics could be really done." 

James Gleick, The Life and Science of Richard Feynman, Vintage Books, 
New York, 1992.
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New Visual Analysis Techniques
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 Big Data in Imaging Research

Anatomical shape averaging
and variability

Computational Statistics
in Nonlinear Spaces

Diffusion Tensor Image Analysis
Autism project

Combined PET + MRI analysis
Alzheimer’s disease project
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  Perceptual Cues for Shading

Jim Blinn: 
“Lighting models... there's something that always bothered me 

about lighting models.   Bui Tuong Phong is[was] a great guy 
and he did wonderful work …                                                                    
The thing is, this has no physical basis whatsoever ...                                                            
I'd like to see cosine power retired and better approximations 
being done.”

    - SIGGRAPH 98 Keynote Speech 
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Perception - Shadows
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Perception - Shadows
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  Indirect Shading of Particles
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  Indirect Shading of Particles
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  Silhouettes
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Real-Time Ray Tracer (RTRT)

Implemented first on an SGI 
architecture - up to 1024 
processors, then a 
distributed memory version 
for clusters, now on other 
SMD machines

Approximately linear speedup
Load balancing and memory 

coherence are key to 
performance
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 Current Cluster RT Visualization 
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 Current Cluster RT Visualization 

Wednesday, September 11, 13



VTK integration

VTK integration gives a common framework 
for running through two common 
visualization packages
• ParaView
• VisIt
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VTK renderer
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 Ray-tracing over-riding VTK renderer
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Parallel Architecture
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Polygon Scaling
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Strong Scaling
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Michelangelos David
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Michelangelos David - Part 2
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 Big Data & Computational Research

Parallel computing power grows x1000 / decade
Challenges:

• Scalable multi-physics multiscale problems 
with possibly many millions of cores.

• Estimate the error and/or uncertainty in the 
solution

• Energy consumption 
• Heterogeneous architectures
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Exascale Challenge for Future  
Algorithms and  Software?

2013 Titan:     288K cpu cores 5M gpu cores 

Blue Gene Q  2 Petaflops* per  MegaWatt 

202X Exascale “goal” requires 50 Petaflops per Megawatt, 
1B cores - not possible with existing hardware/software 
approaches

Harrod SC12: “today’s bulk synchronous (BSP), 
distributed memory, communicating sequential  
processes  (CSP) based execution  model  is 
approaching an efficiency, scalability, and power wall.” 

HPC software now has to take into account       
considerable uncertainty in architectures
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DOE ASCI Center: C-SAFE
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 C-SAFE

Wednesday, September 11, 13



Scientific Computing and Imaging Institute, University of Utah

 Time scales

Explosion ! ! !Fire ! ! !Heatup!

10-6-10-4 !                  10-3-101 ! !       103-104!
Seconds!
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 The Material Point Method (MPM)

2. Overlying mesh defined!

1. Lagrangian material points carry all!
    state data (position, velocity, 

stress, etc.)!

5. Particle positions/velocities updated 
from  mesh solution.!

6. Discard deformed mesh. Define new 
mesh and repeat!

1!

2!

3!

4!

5!

3. Particle state projected to mesh, e.g.:!

4. Conservation of momentum solved!
    on mesh giving updated mesh 

velocity and (in principal) position.!
 Stress at particles computed based!
    on gradient of the mesh velocity.!

6!

vg = Sgpmpvpp∑ Sgpmpp∑

Wednesday, September 11, 13



Scientific Computing and Imaging Institute, University of Utah
Wednesday, September 11, 13



Scientific Computing and Imaging Institute, University of Utah
Wednesday, September 11, 13



Scientific Computing and Imaging Institute, University of Utah

 Uintah Applications

Virtual 
Soldier 

Angiogenesis 

Micropin Flow 

Shaped Charges 

Sandstone 
Compaction 

Foam Compaction 

Industrial Flares 

Plume Fires 

Explosions 
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 Utah Uintah Software Parallelism
Uintah uses both data  parallelism and task parallelism

- Structured Grid + Unstructured Points
Patch-based Domain Decomposition
Adaptive Mesh Refinement

- Dynamic Load Balancing
Profiling + Forecasting Model
Parallel Space Filling Curves
Works on MPI and/or thread level

- Uses asynchronous task directed 
graph approach to scale to 200K cores 
even for adaptive mesh refinement  
and fluid-structure interaction 
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Spanish 
Fork 
Accident

Images from KUTV and Deseret News 
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 Highway  6  Explosion

Use  Utah Uintah Software
To explain why this 

happened
And ensure it never 

happens again

Results by Jacqueline 
Beckvermit  

DOE Titan (5M cores) 
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 Highway  6  Explosion
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 ICSE Carbon Dioxide Cleanup – Red is C02

Turbulent flow problem - need to quantify the uncertainty in the Simulation to estimate how 
much  CO2 is removed.
Need at least 100K cores to resolve the problem scales. 
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 DOE PSAAP-II Center
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Manta - Real Time Ray Tracer
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The Need for High Resolution Visualization

Lower Resolution High Resolution

 “…the data show for the first time how detailed transport and chemistry effects can influence the mixing of reactive scalars. It 
may be advantageous to incorporate these effects within molecular mixing models. It is worth noting that at present it is 
impossible to obtain this type of information any other way than by using the type of highly resolved simulation performed here.”
Jacqueline Chen, Sandia National Laboratories
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 Non-­‐premixed	
  DNS	
  
combustion	
  (J.	
  Chen,	
  SNL):	
  	
  
Analysis	
  of	
  the	
  time	
  evolution	
  
of	
  extinction	
  and	
  reignition	
  
regions	
  for	
  the	
  design
of	
  better	
  fuels

Topological	
  Analysis	
  of	
  Massive	
  Combustion	
  Simulations
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New Parallel Topological Computations Achieve High 
Performance at Scale

Pure Computation

Computation + I/O
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Exploring	
  algorithm	
  design	
  and	
  task	
  alloca4on

in-­‐situ+in-­‐transit	
  workflows	
  enable	
  matching	
  algorithms	
  with	
  architectures

• 4896	
  cores	
  total	
  (4480	
  simula4on/in	
  situ;	
  256	
  in	
  transit;	
  160	
  task	
  scheduling/data	
  movement)
• Simula4on	
  size:	
  1600x1372x430	
  ;	
  All	
  measurements	
  are	
  per	
  simula4on	
  4me	
  step

[SC12a] Combining In-Situ and In-Transit Processing to Enable Extreme-Scale Scientific Analysis

PVR = Parallel Volume Rendering
SSA = Streaming Statistical Analysis
RTC = Reduced Topology Computation
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Visualization of 10D Combustion Simulation 
of Jet CO/H2-Air Flames

10 dimensional data set describing the heat 
release wrt. to various chemical species in a 
combustion simulation

Pure Fuel

Pure Oxidizer

Local Extinction
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Ensembles 

D. Kao,  A. Luo, J. Dungan,  A. Pang.
Visualizing Spatially Varying Distribution 
Data.
In Proc Information Visualization, 2002.

D. Kao, M. Kramer, A. Luo, J. Dungan, A. 
Pang.
Visualizing Distributions from Multi-
Return Lidar Data to Understand 
Forest Structure.
In The Cartographic Journal, 42(1), 2005.

• Multi-run/model 
simulations

• Distribution of data at 
every point

• Mean/std dev may not 
be appropriate

K. Potter, et al.
Ensemble-Vis: A Framework for the 
Statistical Visualization of Ensemble 
Data.
In IEEE ICDM Workshop on 
Knowledge Discovery from Climate 
Data: Prediction, 2009.

J. Sanyal, S. Zhang, J. Dyer,  A. Mercer, P. 
Amburn.
Noodles: A Tool for Visualization of Numerical 
Weather Model Ensemble Uncertainty
In Proc IEEE Vis, 2010.
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  Big Data Challenges in Sci. Vis.

Scalable methods 
In-situ / in-transit methods
Feature extraction / tracking
Power aware algorithms
Reliability / resiliency 
Uncertainty quantification
Visual comparisons
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More Information

www.sci.utah.edu
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