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Can ML reduce core hours?
• Synthetic data using simplified holograms

– Circular droplets only (no ice)
– Synthetic grayscale hologram images
– X,Y,Z-position and Diameter of each particle

• Training (15,000) and validation sets for 1 and 3 
particles per 2-D hologram image

• Goal: learn X,Y,Z-position and D of each particle

Holographic Detector for Clouds (HOLODEC)
• Airborne instrument that measures liquid droplets 

and ice crystals in natural clouds
• Simultaneously measures all particles in 13 cm3 

volume leading to 1000+ particles per hologram
• Refocusing performed on individual particles to 

return the 3-D position of the particle (x, y, z) as 
well as the size (d) and shape (2 million core 
hours per project)

HOLODEC Machine Learning Challenge Problem
Matt Hayman, Aaron Bansemer, David John Gagne, Gabrielle Gantos, Gunther Wallach, Natasha Flyer

Beals et al. 2015



Baseline Models

Three Particle
• 2D CNN model attempting to learn per-hologram 

particle mass distribution along the z-axis

• Ranked Probability Score
– Our model: 4.03e-3
– Uniform distribution: 4.06e-3
– Ranked Probability Skill Score: 0.007

Single Particle
• 2D CNN model attempting to learn per-hologram 

particle x,y,z position and diameter

• Mean Absolute Error 



Team 11: Holodec
Team Member: Jingyin Tang, Jivesh Dixit, Rosa Paccotacya

● We tried following models on the 1-particle problem
○ PCA + Logistic regression
○ Hough search algorithm
○ Benchmark model, modified benchmarked model and ResNet
○ YOLO (you only look once), but not completed

● A visualization of the data 



Team 11: Holodec
MAE of PCA+Logistic, Benchmark and ResNet

Notably, with truncated training set 
(6000 samples), the benchmark 
model’s performance significantly 
degraded

Challenges:

1. Get environment working spends a lot of 
time. Kernels were often killed during 
training, caused data loss and progress 
delay.

2. Hyperparameter is difficult to balance. 
3. Preparing input dataset for different kinds of 

algorithm is more difficult than expected.



Team 11: Holodec

Incompleted trial: YOLO (You only look once)

YOLO perform object identification and segmentation (bounding) in one run.

1. 30x20 slide window; 2, Convolute original image to 30x20xN array. 3 Each 1x1xN box is 
labeled with (k_i, x_i, y_i, z_i, d_i) where i = 1..num_of_particle; k_i = 1 if have ith particle                                            

 
30

20

ki, xi, yi, zi, di

Why we cannot complete:
1. Need implement loss function 

combines IOU and Cross Entropy 
and non-max suppression

2. Need recreate all training label
3. Jupyterhub died with more than 

6000 samples, but not enough.



Team 19: HOLODEC

Team Member Names: 
Akira Sewnath, Anna Jaruga, Ken 
Dixon, Sunyoung Kim*

Methods tried: 
- Linear Regression
- Random Forest
- Gradient Boosting Regressor
- Convolutional Neural 

Network

x-gradient of a hologram y-gradient of a hologram

max (orange) and min (blue) 
distributions in a hologram

binary filter applied to hologram 
for feature extraction



Example feature extraction

Original image
X and Y gradient

X an Y variance of X 
and Y gradient

The normalized 
ratio of x and y 
variances of 
gradients

Extracted data:
- Location of max ratio
- Distance from max ratio to 

ratio = 0.5

Team 19: HOLODEC



Team 19: HOLODEC

Lessons Learned:

- Model interpretability helps find 
errors in feature extraction

- Intentionally extracting features 
from the holograms boosted 
predictions in all the “shallow” 
models tested 

- Sometimes data and 
computational constraints will 
not favor deep learning methods

Model r^2 MSE

Linear Regression 0.745 5898

Random Forest 0.767 3464

Gradient Boosting 
Regressor

0.889 3798

Using LIME to interpret how the Gradient Boosting Regressor predicted y



Team 26: Holodec

3-particle model goal:   Predict mean relative mass by distance from camera

Best fit
RPSS = 0.011

Optimize Method RPSS

Baseline Model -0.234

Double dense layer nodes:  [64,32] to [128,64] -0.310

Halve dense layer nodes:  [64,32] to [32,16] 0.009

Batch size increase from 128 to 264 -0.006

Filter change from [16,24,32] to [4,6,10] and batch size increase 
from 128 to 264

0.011

Change filters:  [16, 24, 32] to [8, 16, 24, 32] 0.000

Baseline
RPSS = -0.234

Team members: 
Abigail Whiteside, Burkely Gallo, David Jahn, Sitian Xiong

Blue boxes: mean relative mass distribution along z from validation set; 
Red boxes: mean relative mass distribution along z from prediction; 



Team 26: Holodec

Neat Results
● It takes about 200 particles in the three-particle model to asymptote to your final 

RPSS solution, though this may vary depending on the distribution of particles

Lessons Learned
● Make sure to define the problem and the expected physical results first! This will 

help with your interpretation of how good your ML model is later.

Challenges
● Find the optimal combination of hyper-parameters for the prediction.
● Connect the hyper-parameters and model to mechanical and physical process.

1-particle model goal: 
Predict X, Y, Z particle position and diameter (D) of particle (μm) 

Robust scaler did best for most metrics, but standard scaler also did 
very well

Batch size: 64

Batch size: 264



Team 35: Holodec
● Data are synthetic images of 

spherical particles of known 
size and location

● Baseline method is a 
convolutional neural network

Attempted techniques

● Kernels of non-square shape 
(tall and narrow vs wide and 
flat)

● Altering batch size, training 
epoch, and activation function

Don Hood Angela Bliss
Vikram Ravi* Imoleayo Ezekiel Gbode*
Bhanu Magotra*



Team 35: Holodec
Did not improve model noticeably

Lessons learned/challenges

● Learning curve of Keras and interpretability 
was challenging

● Little improvement in error metrics suggest 
other model modifications are needed 

Challenges

● Improving on initial model was challenging
● Model training time was big inhibitor to 

model experimentation

Baseline Model Loss

Modified Model Loss



Team 40: HOLODEC (one particle) Team Members: Alyson Douglas, Paula 
Marangoni, Qing New

4 Layer CNN

ResNet-50 (could only do 2 epochs with time constraints)



Team 40: HOLODEC (three particles)
Lessons Learned:

● Hyperparameters make 
(or break) a model

● More complex models 
may increase accuracy 
given time and GPUs

● Low loss doesn’t imply 
high accuracy

○ Simple CNN had 
loss < .09, but MAE 
100x larger than cut 
offs

● More particles, more 
problems



Team 47: <Holodec>
● Team Members: 

○ Xia Sun, Sarah Feron, Victor He, Katherine He

● Summary of methods tried
○ Downscale the images from 600*400 to 50*50 to reduce training time:                          

○ from skimage.transform import downscale_local_mean
○ train_inputs_scaled_one_rescaled=downscale_local_mean(train_inputs_scaled_one,(1,12, 8,1))

○ Models trained: PCA, LinearRegression, RandomForest, DNN, CNN

downscale



Team 47: <Holodec>

● CNN model (in purple) performed best 
with lowest MAE and highest explained 
variance score (avg.0.87), followed by 
RandomForest (avg.0.76)

Truth Prediction

Performance Metrics

Validation example: CNN predicted at h=150 ● The validation example using our 
best model CNN predicted x, y, z, 
and d (valid_preds) agree well with 
truth (valid_outputs)

● Lessons learned/challenges:

To understand what the individual layers 
are actually doing and how to come up 
with a good architecture (rather than 
trial and error)

MAE Explained σ2

x=587μm, y=509μm, 
z=109459μm,d=62.7μm

x=558μm, y=490μm, 
z=93691μm,d=63.9μm



Image Credit: NASA, black carbon as CCN

Dimensionality Reduction
❏ We focused on the single 

particle problem 

❏ We attempted first to use 
simple models and beat the 
scores from the baseline 
CNN, and then to tune 
neural networks 

❏ The challenge in running 
simple models was the large 
initial feature space 
(600x400 pixels)

❏ We first show 3 methods of 
dimensionality reduction we 
used to tackle this problem

Antara Banerjee, Xinchang Li, Geneva Gray, Narges Shahroudi, and Tenzin Yangkey
Team 49: HOLODEC



Team 49: HOLODEC

Image Credit: NASA, black carbon as CCN

Baseline CNN
6000 training

~10 mins

Baseline CNN
15000 training

NB. CRASHES these 
numbers are copied 

from workbook

Simple model, best predictions
6000 training

1 min (ridge), 6 mins (RF)

Simple model, best predictions
15000 training

17 mins

x ~300 20 35 (Mean y, Random forest, default HPs) 23 (Mean y, Random forest, default HPs)

y ~220 12 24 (Mean x, Random forest, default HPs) 16 (Mean x, Random forest, default HPs)

z ~55000 2519 - -

d ~15 1 4 (PCA, Random forest, default HPs)
5 (Downsize, Ridge regression, ⍺=10)

4 (Downsize, Ridge regression, ⍺=10)

We note that:
● Our predictions from relatively simple models trained on 6k images are pretty good compared to a complex CNN 

trained on 15k images.
● Moreover these simple models are quicker and less memory intensive.
● We achieved some improvements on CNN with 6k training size but nowhere near the values for 15k samples – 

perhaps better to use a different type of NN (e.g. segmentation) for smaller training size?

MAE scores for validation predictions



Image Credit: NASA, black carbon as CCN

 1-particle 3-particle 

Convolutional NN Attempt Attempt

Dense NN Attempt No Attempt

Random Forest Attempt No Attempt

Linear Regression Attempt No Attempt

Gradient Boosting Attempt No Attempt

Lessons Learned

● CNN and DNN take a LONG time to run.
● There seem to be unlimited options to reduce dimensionality in the data and tune model 

hyperparameters. This is not a “one and done” process.
● Understanding the underlying data goes a long way in designing proper ML methods.
● Get familiar with the dataset and try to approach it creatively - may help simplify the problem 

tremendously 

Team 49: HOLODEC
Hologram Example (1-particle)


