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Overview

e What is Data Assimilation?
e What is DART?

* Current Work on Highly Scalable Systems
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Overview of Data Assimilation
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Overview of Data Assimilation
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Overview of Data Assimilation
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Overview of Data Assimilation

Estimate Errors,
Design Systems
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Data Assimilation Research Testbed
(DART)

DART is a community ensemble assimilation facility.
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Data Assimilation Types

* Variational Systems

— Used by operational NWP forecasting centers

 Ensemble Systems
— Make many forecasts

— Easier to develop a DA system, especially for large
models

— Feasible for individual researchers, small groups
— Produces uncertainty information



Data Assimilation Research Testbed

 DART software is used for:
— Building Ensemble Data Assimilation systems
— A Teaching tool
— A DA Research tool

* Users canrun it:
— Out of the box
— Add their own new models
— Add their own new observation types
— Change the assimilation algorithms
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48 UCAR member universities
More than 100 other sites
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Jet Propulsion Laboratory
California Institute of Technology
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DART Models

1D, 2D+

— 6 Lorenz models, simple chaotic models (e.g.
lkeda, Null, 9var, SQG, PE2LYR, Bgrid_solo)

* Full Geophysical Models

— Coupled Climate, Weather, Ocean, Land, ...

(e.g. CESM, WRF, POP, MITgcm, COAMPS, GITM,
MPAS, TIEgcm, Rose, NOAH, NOGAPS)

* Economic, Epidemiological, Ecosystem, etc




Lorenz Models

Lorenz Attractor

File Edit View Insert Tools Desktop Window Help

Lorenz 96

run_lorenz_96
Edit View Insert Tools Desktop Window Help
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Lorenz 96 with DA
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DART Models

1D, 2D+

— 6 Lorenz models, simple chaotic models (e.g.
lkeda, Null, 9var, SQG, PE2LYR, Bgrid_solo)

* Full Geophysical Models

— Coupled Climate, Weather, Ocean, Land, ...

(e.g. CESM, WRF, POP, MITgcm, COAMPS, GITM,
MPAS, TIEgcm, Rose, NOAH, NOGAPS, COSMO)

* Economic, Epidemiological, Ecosystem, etc




Example Dart Observation Types

Atmospheric Obs

— Radiosondes (balloons) Temperature, Winds
— Aircraft, Satellite Winds, Surface Obs, GPS (T, Q)

Ocean Obs
— Temperature, Salinity, Sea Surface Temp/Height

Land Obs

— Snow cover, CO Fluxes from Towers

Novel Obs Types

— Gravity/Length of Day, Leaf Area Index, COSMOS
Neutron Soil Moisture



Examples of Observation Density by Obs Type

Observations 1 December 2006
ACARS and Aircraft
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Atmospheric Reanalysis

O(1 million) Assimilation uses 80
atmospheric obs Ve N\ members of_2° FV CAM
assimilated every day. & /// /=m0 forced by a single ocean.

90E

500 hPa GPH
Feb 17 2003

Used in turn to force an

ensemble of ocean models

where each ocean ensemble

member is matched with a

different atmosphere state

CONTOUR FROM 5200 TO 5700 BY 100
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Observation Visualization Tools

X Figure 1
File Edit View Insert Tools Desktop Window Help

NEHS |V AROBERL-|E|0E | am

X MATLAB 7.9.0 (R2009b)

File Edit View Graphics Debug Parallel Desktop Mindow Help
NS %2R | @ =f 2 | @ | current Folder:|/fs/image/home fthoar/DART fmodels /P OP jwork

Shortcuts 2] How to Add (2] What's New

¥ Variable Editor - obsmat wOax
B EDRB| Q2L | W |stak L2 No wvalid plots for: ohsm... + B OB E‘I;U 2 X
XBT_TEMPE RATURE FH obsmat <2739x9 double>
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241 340.07007 61.0009_ 600 6.2390}7 8.0034 7 618h 7.2976e+057 p.
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=R Y| [M % & M9 E jg‘ 51“ 0 m O N = 1520 FLOAT_SALINITY (type 15) tween levels 0.00 and 1400.00
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; o ® O0® 000 O O ®OO DO O@OOWD DD N = 1419 BOTTLE_SALINITY (type 30) tween levels 0.00 and 5000.00
£ 5t s R ooof)’jm@o‘; @OMO@"OO(;@Z . N = 1568 BOTTLE_TEMPERATURE (type 31) tween levels 0.00 and 5000.00
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Parallel Computation Issues

 Model algorithms are usually grid based

— Subregions of the model grid are distributed to
different processors for parallel computation

— Best distribution puts nearest neighbors on same
processors and communicates across boundaries

* DART parallelizes differently than most apps
— 3 distinct data decompositions for parallelism



Ensemble Filter For Large Geophysical Models

1. Use model to advance ensemble (3 members here) to time at
which next observation becomes available.

Ensemble state estimate, x(t,), after
using previous observation (analysis)

Ensemble state at time
of next observation

> (prior)
ik
:/ — tk+1
H — _‘_‘_,_...-V
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Ensemble Filter For Large Geophysical Models

1. Use model to advance ensemble (3 members here) to time at
which next observation becomes available.

Ensemble Member 1

Ensemble state
using previous (

me

B — Now: Example model decomposition choice
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Ensemble Filter For Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying
forward operator h to each ensemble member.

h Theory: observations from
h instruments with uncorrelated
errors can be done sequentially.

tk
tk+1

ok ok

— Y

12 Sept 2013 CAS2K13 - Annecy 29



Ensemble Filter For Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying
forward operator h to each ensemble member.

Ensemble Member 1

- —

R
k_~

A n LA LR N i
.
! Hals s s naasnsRien %

ons from
uncorrelated
e sequentially.

AN

t

Now: Entire state available for forward ops
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Ensemble Filter For Large Geophysical Models

3. Get observed value and observational error
distribution from observing system.

- r I y
M h
tk
- S
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Ensemble Filter For Large Geophysical Models

4. Compute the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

-"/\T—> -

h N\ h

Note: Difference between various
tk ensemble filters is primarily in
observation increment calculation.

ok ook

— P 4
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

tk

Theory: impact of observation

increments on each state
_ . variable can be handled
independently!

ok ok
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

_/

\ B

\{/

tk _jfT ct of observation
: ----------------------------- m ntS on eaCh State
a2 e can be handled

== Now: Distribution ensures good load balancing

independently!
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Ensemble Filter For Large Geophysical Models

6. When all ensemble members for each state variable are
updated, there is a new analysis. Integrate to time of next
observation ...

- T | y - _-_I 1 :__._ I__._- ""y
o M h

tk+2

tk N —

E_ T T _:
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Ensemble Filter For Large Geophysical Models

6. When all ensemble members for each state variable are
updated, there is a new analysis. Integrate to time of next
observation ...

: Ensemble Member 1 :

tk/,.
*

=
®——_  Now: Back to model-defined decomposition -
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DART Evolution Challenges

* DART runs well on O(10 — 1000) processors
* New architectures O(100,000) processors

* Highly scalable systems require less global
communication, more asynchronicity

— Less memory per node, more nodes, lower power
— Harder to program Geophysical applications



Addressing Shrinking Memory Sizes

* Redesigning forward operator algorithms to
avoid the need for entire state of one
ensemble member in single task memory

* Requires additional communication for some
types of forward operators

e Keeping spatial locality lowers communication
overhead but presents load balancing issues



Ensemble Filter For Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying
forward operator h to each ensemble member.

Ensemble Member 1

- —

R
k_~
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ons from
uncorrelated
e sequentially.

AN

t

Old: Entire state available for forward ops
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Ensemble Filter For Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying
forward operator h to each ensemble member.

Ensemble Member 1

ons from
uncorrelated
e sequentially.

B — New: Distributed State with spatial locality
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Ensemble Filter For Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying
forward operator h to each ensemble member.

Ensemble Member 1

ons from
uncorrelated
e sequentially.

®——  New: But some communication may be needed
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Avoiding Global Communication

e Current implementation transposes data for
load balancing during state adjustment phase

* Global operations prohibitively expensive on
O(100,000) processor counts

* Avoiding transposes avoids global operation
but again raises more load balancing issues



Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

_/

\

\{/

lil==‘:

tk _jfT ct of observation
: ----------------------------- m ntS on eaCh State
a2 e can be handled

=== Old: Distribution ensures good load balancing

independently!
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

/ Ensemble Member 1 \
I ) . > 7y . —I =i
P ' S SR -— Y
s /
h Rk
tk T R ey e oot el ct of observation
AL LT T R Y =
T | |sessssssssssssssssscssssasssnnnssnnn nts on each state
¥ be handled
#———_ New: Less communication; load balance issues € .Can € handie
independently!
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

_/

\

ik
E
%
%

"'--__--

Ensemble Member 1

. :llllﬁllllllwm

AL LT T R Y =
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New: Potentially very big load balance issues

N/

ct of observation
nts on each state
e can be handled
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

/ Ensemble Member 1 \
- — _ :I" -#r . —| -
_; ,. shasaansaan : @.-', ..... y
Ly
3 /
R e
T X i - o RN *
n ﬁ‘?gs.:::s::eez... A
tk T byttt e ct of observation
%= | [sesssscssssssess - nts on each state
% be handled
B — New: Load balance mitigated by layout choice € .Can € han
independently!
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Ensemble Filter For Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

/ Ensemble Member 1

N/

. :Illl B RS el “lI:I“I .
tk ....... et TS eyl ct of observation
AL LT T R Y 3
: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii nts On each State
B — New: Disjoint obs sets processed in parallel € .Can be handled
independently!
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DART Evolution for MPP Systems

* Allow single ensemble state to span multiple tasks
— Decompose across a small number of nodes
— Data movement confined to subsets of nodes

e Support distributed forward operator computations
— Spatially local decomposition minimizes communication
— One-sided MPI-2 communication avoids barriers

* Avoid global communication at state adjustment phase
— Smarter decomposition for load balancing
— Parallel adjustments of disjoint observation sets



DART Evolution (cont)

e Maintain reasonable interfaces that enable user-
extensible sections of the code
— Support for modification by domain scientists

— Clear and understandable process for adding new
models and new observation operators

— Encapsulate MPI code at a level where user does not
have to understand the details

* Transformational hardware architecture changes
may require transformational algorithmic choices
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Thank you!

nancy@ucar.edu
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