
A Portable Applications- Driven Approach to
Scalability on Present and Future Exascale Systems

John Holmen* Alan Humphrey, Brad Peterson, Damodar
Sahasabarude, John Schmidt & Martin Berzins

Scientific Imaging and Computing Institute
University of Utah

1. Exascale challenges
2. Nodal scalability via Uintah, runtimes and programming models
3. Scaling challenging global problems (radiation)
4. Performance portability using Kokkos
5. Conclusions

*Intel Parallel Computing Center

*

Uintah Background and Acknowledgements
DOE NSF People

• DOE ASC Strategic Academic Alliance Program 1998 -2010
• ALCC and Directors Discretionary time awards
• INCITE (4 awards 700M cpu hours in total)
• Argonne , Oak Ridge and NNSA Facilities
• NNSA PSAAP2 center funding 2014-2020
• Argonne A21 exascale early science program
• Sandia Kokkos group and Livermore Hypre Group
• NSF software funding and Peta-Apps 2007- 2015
• NSF XSEDE TACC Blue Waters computer time and facilities
• The 50 or so people on Uintah and its related projects, since 2003 particularly The

Uintah “wizards” Steve Parker, Justin Luitjens, Qingyu Meng and Alan Humphrey .
• NNSA PSAAP2 Co PIs Dave Pershing, Phil Smith Valerio Pascucci

PSAAP2 Applications Team
Todd Harman Jeremy Thornock Derek Harris Ben Isaac

PSAAP Extreme Scaling team
John Schmidt Alan Humphrey John Holmen Brad Peterson Damaodar Sahasbaude

Part of Utah PSAAP Center

Exascale Machines Possible Timelines

2018 Summit (Oak Ridge) and Sierra
(LLNL) <4,500 nodes with 2 power 9 +
6 Volta GPUs 120- 200F?

2020 Tianhe 3
2020 Post K Machine
2020/21 Sunway Exascale
2020/21 Sugon Exascale

2020/21 Argonne A21 Intel Architecture

2021 Oak Ridge Frontier 1,000–3,000 PF
LLNL “El Capitain”

All of these are “novel” architectures GPU Arm Custom etc

Addressing the challenges of multi-scale multi-physics
applications on varied future architectures

(i) Use asynchronous many task (AMT) approaches to ensure that
the compute nodes always have work to do .

(ii) Look at the scalability of challenging .nonstandard algorithms.

(iii)Make sure that tasks on nodes can run in a portable fashion
and as efficiently as possible without code changes.

Addressing the challenges of multi-scale multi-physics
applications on varied future architectures

(i) Use asynchronous many task (AMT) approaches to ensure that
the compute nodes always have work to do .

(ii) Look at the scalability of challenging .nonstandard algorithms.

(iii)Make sure that tasks on nodes can run in a portable fashion
and as efficiently as possible without code changes.

Illustrate this with the Uintah software

Consider the scalability of global radiation problems

Use the Kokkos scalability library

Uintah development timeline

• 1998-2007 CSAFE ASCI Center- static execution of task graphs, complex
multiphysics . Steve goes to NVIDIA .

• 2008-2010 CSAFE Full physics, AMR for fluid-structure
• 2010-2015 Adaptive asynchronous. out-of-order task execution
• 2014- PSAAP2 Center Turbulent Combustion - full scalability on Titan Mira,

Blue Waters – moving to exascale portability?

Task Based approach by Steve Parker Originated in
SCIRun problem solving (workflow) environment for
large scale biomedical problems .
Simple programming model- separation
physics and computer science
Developed independently of Charm++ and Sarkar.

Uintah Asynchronous Many Task (AMT) Approach 2008…

e.g. three compute nodes 12 mesh patches

Per patch Task Graph Task Graph Task Graph

Execute tasks when possible communicating as needed. Do useful
work instead of waiting. Execute tasks out of order if possible

In Uintah dynamic task graph execution needed for more than 100K cores

Over-decomposition in the Uintah AMT Approach
e.g. one compute core 8 mesh patches consider bottom 4

Execute tasks
from whichever
patch has its
halos as this
avoids delays –
prioritize tasks
with external
communications

4 simple
identical
task
graphs

External Halo
information

External Halo
information

Multiple Patches on a
single core
allow flexibility of
execution

Internal
Halo
information

Start immediately

Wait for external
Halo information

Wait for external
Halo information

Uintah Architecture Review

Asynchronous Task Runtime System

MPM Particles

ICE FV Fluids

CPUsGPUs Xeon Phis

PDE Applications
Code
Components

Automatically generated
abstract C++ task graph form
With mpi compiled in

ARCHES

Task Graph Compilation

About 1.2 M
lines 500K
“core’ C++

50K Lines

250K lines

250K lines

A.N.OTHER

Kokkos Portability Library

Uintah Architecture Review

Asynchronous Task Runtime System

MPM Particles

ICE FV Fluids

CPUsGPUs Xeon Phis

PDE Applications
Code
Components

Automatically generated
abstract C++ task graph form
With mpi compiled in

ARCHES

Task Graph Compilation

About 1.2 M
lines 500K
“core’ C++

50K Lines

250K lines

250K lines

A.N.OTHER

Kokkos Portability Library

New Uintah Programming Model for Stencil Timestep

Unew = Uold +
dt *F(Uold,

Uhalo);

N
etw

ork

Old Data
Warehouse

GET
Uold/Uhalo

Halo receives Uhalo

MPI

New Data
Warehouse

PUT
Unew

Halo sends
Example Stencil Task

Kokkos loops and
data structures

Uintah::BlockRange range (patch->getCellLowIndex(),
patch->getCellHighIndex());
Uintah::parallel_for (range, [&](int i, int j, int k) {
char_rate[I,j,k] = 0.0;
. . .

}

Automatically calls non-Kokkos, Kokkos
OpenMP or Kokkos cuda, depending on build

Scalability is at least partially achieved by not executing tasks in order e.g.

Straight line represents given order of tasks . X shows when a
task is actually executed.
Above the line means late execution while below the line means
early execution took place. More “late” tasks than “early” ones as
e.g. TASKS: 1 2 3 4 5

1 4 2 3 5

Early Late execution

• Arches: industrial flares John Zink, ultra Low
Nox: Chevron Fives, CO2 mineralization Calera
Corp, LES with REI consulting, Mitsubushi Heavy
Industries low Nox, General Electric Boilers +
many universities. Radiation and LES models

• ICE: semiconductor devices, flow over cities,
accidental detonations, turbulence , reactive
models Air Force

• MPM: fundamental analysis. Army Research
Lab Center in Materials Modeling, novel battery
models with silicon, penetration and fracture
models for oil industry , Darpa heart injuries,
angiogenesis. Many different solid mechanics
models.

Micropin Flow

Virtual
SoldierAngiogenesis

Sandstone
Compaction

Plume Fires
A Few Uintah Apps Codes Examples

Industrial
Flares

Carbon
capture

Air
Pollution
Models

NNSA PSAAP2 Existing Simulations of GE Clean(er) Coal Boilers
• Large scale turbulent combustion needs mm scale

grids 10^14 mesh cells 10^15 variables (1000x more
than now)

• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation
• LES closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

60m
• Low Mach number approx. (pressure Poisson solve up to 10^12

variables. 1M patches 10 B variables
• Radiation via Discrete Ordinates – many hypre solves Mira

(cpus) or ray tracing Titan (gpus).
• FAST I/O needed PIDX

Uintah scales for the Boiler problem on the largest
machines that we have access to

Discrete Ordinates Radiation
Discrete Ordinates
Radiation

STENCIL OPS ETC

Linear Solve with

Hypre only
weak scales

Standard I/O

PIDX I/O

STENCIL + LINEAR SOLVE

Full physics multi-level GPU-RMCRT
strong scales on Titan

Shenwei TaihuLight Architecture:
●Each Sunway Compute node contains 4 core groups (CGs).

● CG : 1 Management Processing Element (MPE) and 64 CPEs
Computing Processing Elements

●MPE handles the main control flow / management,
communications and computations and shares its memory with…..

● cpes are used to perform computations. These can be considered as
“coprocessor” used to offload computations. With 256 vector
instructions. Cacheless but with shared scratch memory 64K (
LDM)

● 10M cores 93PF vectorization and comms hiding keys to
success.

M
PE

Source https://science.energy.gov/~/media/ascr/ascac/pdf/meetings/201609/Dongarra-ascac-sunway.pdf

Sunway specific changes Damodar and Zhang Yang IAPM (NSF)
Infrastructure and Scheduler: 200 lines of new code
● Updated offloading and polling mechanism using OpenACC

Computational Kernel / Task: 200 lines of new code
● Porting of Kernel: -main comp. kernel rewritten using Fortran, C, OpenACC and

native athread runtime as CPEs do not support C++ low level SIMD instructions
● Need to use athreads low-level SIMD commands to overcome OpenACC slowdowns

Optimizations:
Tiling: The CPE part of scheduler divides tiles

among CPEs.
Vectorization: Used native SIMD vector intrinsics

for vectorization
Perfect scaling out to 8192 cores on Sunway
development queue. IPDPS PDSEC 2018 paper

Weak and Strong Scalability of a Challenging
Thermal Radiation Case

Radiation Overview
Solving energy and radiative heat transfer equations simultaneously

• Energy equation conventionally solved by ARCHES (finite volume)
• Temperature field, T used to compute net radiative source term,

requires integration of incoming intensity about a sphere

=
∂
∂

t
T

Diffusion – Convection + Source/Sinks q⋅∇ Divergence of
heat flux

for all cells in a mesh patch do
sumI = 0 // init sum of radiative intensity
for all rays in a cell do

findRayDirection()
findRayLocation()
updateSumI() // sum incoming intensities

end for
compute

end for
add back into ongoing CFD calculation

q⋅∇ • Net radiative source term goes back
into ongoing CFD calculation

q⋅∇

4
. (4) r rrays
q I Id I

π
κ π α∇ = − Ω →∑∫

Radiation Overview
• Including Radiation means that every one of 10^10 cells may be connected

to every other cell
• Model radiation using Monte Carlo ray tracing (RMCRT)
• Replicate AMR versions of the mesh on each node
• Ray trace in parallel
• Radiative properties and radiative fluxes calculated on each node and their

AMR values transmitted to minimize communication volume in all-to-all.

• Mean time per timestep for GPU
lower than CPU (up to 64 GPUs)

• GPU implementation runs out of
work, communication dominates

• All-to-all nature of problem limits
size that can be computed due to
memory constraints with large, highly
resolved physical domains

Strong scaling results for both CPU and GPU
implementations of single-level RMCRT on TitanDev

n

n
n
n

3

3 3

Nested AMR mesh of levels
Each box:
 8x volume of the one inside it
 with same number of n points .
AMR communication volume of mesh

1values from innermost box n n)8
Fine mesh communication i

p

p(

ps (

−
33

3 2

n
AMR reduces communication volume

8 by a factor o

-1

f

)

p 1 p() / p7 − ≈

Each compute node traces rays on this AMR version of the whole mesh
But only “owns” the innermost mesh patch(es).

AMR
RMCRT

• Apparent deadlock at 32,000 CPU cores – difficult to debug, commercial debuggers

• RMCRT “RayTrace” task requests a “global halo” for ray marching – new challenges

• Uintah task-graph (TG) compilation algorithm overcompensating when constructing lists
of neighboring patches for local halo exchange on fine mesh.
• Load balancer considering all patches on fine level as potential neighbors

• Cost of this operation grew when patches/node stayed constant

))log()log((2211 nnnn ⋅+⋅Ο

))log(())log((2211 npnnn ⋅Ο+⋅Ο
n1 = # coarse-level patches
n2 = # fine-level patches
p = # processor cores

Reduced 4 hour TG compile times at 32k cores to under 1
minute, making initial large scaling results possible

Complexity reduction:

S. P. Burns and M.A Christon. Spatial domain-based parallelism in large-scale, participating-media, radiative transport applications.
Numerical Heat Transfer, Part B, 31(4):401-421, 1997.

4.2X Speedup
over 256K CPU

version at
16,384 GPUs

Challenge: RMCRT strong scales but does it weak scale?

●Fixed mesh domain size grows by 8 and
then communications per node grows by a
factor of 8 too. Computation per node locally
grows by 8 too with a uniform mesh

●What about using the adaptive mesh
paradigm?

●When the mesh size increases use adaptive
mesh coarsening for the new mesh.

RMCRT Communications AMR Weak scaling
26 Level 1 nodes
around node

Each compute
node has to
communicate
with
neighboring
nodes one, two
or more levels
away

Aggressive
coarsening
The next
level treats
these 27
patches as
the new
fine node

More generally if M coarse levels on a node then adding N more levels for weak scaling at
most only multiplies the computational and communication s work by a factor of (N+M)/M
the work- hence weak scaling with a factor of two if M = N if aggressive coarsening is used

When the full
problem size
increases by 26 at
the coarse level and
there are already 27
patches per node
the workload only
increases by
(27+26)/26.

RMCRT WEAK Scaling Results 100 Rays per cell
128^3 RR=2 256^3 RR=4 512^3 RR=8

CORES TIME CORES TIME CORES TIME

128 40.5 1k 44.3 8k 65.7

256 20.0 2k 32.4 16K 33

512 15.0 4k 16.0 32k 16.7

1K 7.6 8k 7.94 64k 8.67

2K 3.9 16k 4.66 128K 6.98

4K 2.13 32K 2.85 256K 4.77

Roughly 2X growth in weak scaling as theory predicts

Performance Portability Using Kokkos

Performance Portability Using Kokkos and C ++11 Functors/Lambdas

• Kokkos:C++11 Library for implementing portable thread-parallel codes

• Application identifies parallelizable grains of computation and data

• Few changes to enable Kokkos support via lambdas as they implement an
unnamed functor class behind-the-scenes

• Many changes to enable Kokkos support via functors as developers manually
implement the functor class.

• Kokkos maps those computations onto cores and that data onto memory
Supported architectures Multicore CPU, Intel Xeon Phi and NVIDIA GPU,IBM
Power AMD etc

Functors and Lambdas in C++11

Functor - function object that looks like a function but persists –
need to instantiate – stored state.

Lambda* - “syntactic sugar “ for writing a functor. Enables
functor approach to be applied more quickly. Inline function.

* terminology goes back to the LISP notion of a function

• Parallel Pattern user’s computations (kernel)
parallel_for, parallel_reduce, parallel_scan, task_graph, …

• Execution Policy how the kernel should be executed static scheduling, dynamic
scheduling, thread-teams, …

• Execution Space where the kernel will execute, Which cores, numa regions,
GPUs, …

• Memory Space where the data is allocated
Host memory, GPU memory, High Bandwidth memory, …

• Layout how the data is mapped to memory Row-major, Column-major, Tiled, …

• View multiple dimensional array that is allocated in a memory space with the
appropriate layout

Kokkos Abstractions Patterns Policies and Spaces

Portable Uintah Tasks

Uintah tasks can run
three ways.

pthreads (for
backwards
compatibility of legacy
tasks).

OpenMP CPU or Cuda
GPU threads for
Kokkos enabled tasks.

Tasks portably access data
store variables from host
memory or GPU memory.

Different tasks can execute
in different portable modes.
Can mix CPU and GPU
tasks in the same build.

Data Store

Application Developer Tasks

Runtime engine

Task Graph
(DAG)

Individual CPU
pthreads

OpenMP CPU
threads

Other nodes

CPU code

MPI

Task Queues

Kokkos portable code

Host
Memory

GPU
Memory

CUDA GPU
threads

Kokkos::Cuda TeamPolicy
Nested Kokkos parallel_for loops
to
launch functor

Under the Hood

Uintah::parallel_for(lambda/functor
)

Loop over all (i, j, k)
launch functor

Kokkos::OpenMP RangePolicy
Kokkos parallel_for loop to
launch functor

Kokkos
O

penM
P

// Lambda –based Kokkos approach
Uintah::BlockRange range(patch->getCellLowIndex(), patch->getCellHighIndex());
Uintah::parallel_for(executionObject, range, KOKKOS_LAMBDA(int i, int j, int k) {

double particle_absorption = abs_scat_coeff[abs_coef](i,j,k) * weightQuad[ix](i,j,k) *
portable_absorption_modifier;

abskpQuad[ix](i,j,k) = (vol_fraction(i,j,k) > 1e-16) ? particle_absorption : 0.0;
abskp[0](i,j,k) += abskpQuad[ix](i,j,k);

});

// Legacy approach without Kokkos
for (CellIterator iter = patch->getCellIterator(); !iter.done(); iter++) {

IntVector c = *iter;

double particle_absorption = abs_scat_coeff[abs_coef][c] * weightQuad[ix][c] *
portable_absorption_modifier;

abskpQuad[ix][c] = (vol_fraction[c] > 1e-16) ? particle_absorption : 0.0;
abskp[0][c] += abskpQuad[ix][c];

}
BLUE blue is unchanged code is

//FUNCTOR-BASED APPROACH WITH KOKKOS SUPPORT
namespace {
struct eval_functor {

KokkosView3<double, Kokkos::HostSpace> abs_scat_coeff;
KokkosView3<const double, Kokkos::HostSpace> weightQuad;
const double portable_absorption_modifier;
KokkosView3<double, Kokkos::HostSpace> abskpQuad;
KokkosView3<const double, Kokkos::HostSpace> vol_fraction;
KokkosView3<double, Kokkos::HostSpace> abskp;

eval_functor(KokkosView3<double, Kokkos::HostSpace> & m_abs_scat_coeff
, KokkosView3<const double, Kokkos::HostSpace> & m_weightQuad
, const double & m_portable_absorption_modifier
, KokkosView3<double, Kokkos::HostSpace> & m_abskpQuad
, KokkosView3<const double, Kokkos::HostSpace> & m_vol_fraction
, KokkosView3<double, Kokkos::HostSpace> & m_abskp
)

: abs_scat_coeff (m_abs_scat_coeff)
, weightQuad (m_weightQuad)
, portable_absorption_modifier (m_portable_absorption_modifier)
, abskpQuad (m_abskpQuad)
, vol_fraction (m_vol_fraction)
, abskp (m_abskp)

{}

void operator() (int i, int j, int k) const {
double particle_absorption = abs_scat_coeff(i,j,k) * weightQuad(i,j,k) *

portable_absorption_modifier;
abskpQuad(i,j,k) = (vol_fraction(i,j,k) > 1e-16) ? particle_absorption : 0.0;
abskp(i,j,k) += abskpQuad(i,j,k);

}
};}

Uintah::BlockRange range(patch->getCellLowIndex(), patch->getCellHighIndex());
eval_functor functor(abs_scat_coeff[abs_coef], weightQuad[ix], portable_absorption_modifier,

abskpQuad[ix], vol_fraction, abskp[0]);
Uintah::parallel_for(executionObject, range, functor);

Functor version

Internal vars

Parameters
passed
Set internal=
external

blue is unchanged
code.
Note Code bloat

• The most challenging of Arches 500 loops (1.6 flops per word.)

• Computational bottleneck with legacy C++ features 75% of runtime

• ~350 lines of code with e.g. 60 Newton iterations and many calculations to
determine reaction rates and compute char particle destruction rates:

• Loop (#Reactions + #Reactions * #Reactions) * #NewtonIterations *
#Environments times per cell:

• Replaced use of std:vector with arrays of plain old data
• Removed memory allocations from loop
• Hard-coded calls to virtual functions and optimized math calls
• Setup DW variables as unmanaged Kokkos views (Uintah::KokkosView3) for

Kokkos-based Uintah builds

Optimizing Serial ARCHES Char-Ox Loop

2.66x speedup of serial code

Simple Radiative Properties Loop

Weighted properties are then used to compute global radiative heat flux

for all mesh patches do
for all cells in a mesh patch do
apply a weight to a particle’s absorption coefficient
store the weighted coefficient for flow cells
store a zero for non-flow cells

end for
end for

Up to 4.93x serial performance improvement on CPU by:

i. Replacing legacy loop statement with Uintah::parallel_for

ii. Replacing legacy data structures with Uintah::KokkosView3

Results: Adding Loop-Level Parallelism vs Xeon Core
CPU: Two Intel Xeon E5-2680 Sandy Bridge processors 2.7 GHz; 16 cores; 2 threads per core, 64
GB, GPU Maxwell 12 GB, KNL: 1.3 GHz; 64 cores; 4 threads/core 96 GB

•Complex CharOX Loop:

• 16^3 32^3 64^3 patches

• 14x, 15x 15x speedup CPU (Kokkos::OpenMP 16 cores)

• 50x 68x 67x speedup GPU (Kokkos::Cuda 24 blocks 256 threads each)

• 46x 65x 76x speedup KNL (Kokkos::OpenMP 64 cores 64 threads)

•Simple Radiation Props Loop (not enough work):

• Up to 12.83x performance improvement on CPU (Kokkos::OpenMP)

• Up to 6.04x performance improvement on KNL (Kokkos::OpenMP)

Results: Using More Threads per Core

Complex CharOX Loop:

i. Up to 1.11x performance improvement on CPU (2 threads per core)

ii. Up to 1.47x performance improvement on KNL (4 threads per core)

Simple Radiation Props Loop:
i. Up to 1.19x performance improvement on CPU (2 threads per core)

ii. Up to 1.45x performance improvement on KNL (4 threads per core)

Up to 2X slowdowns when not enough per-core work (163 cells per patch)

RMCRT
Kokkos delivers amost
1.7x over original cuda
/cpu/ MIC code.

Low peak as 0.7 Flops /
DP word

Good strong scaling to
1728 KNLs

RMCRT speedups lower
on CPU/GPU/KNL 1.2-2.9x

Future Work
Finish Arches Kokkos Port
and SIMD Kokkos

Move Uintah Arches to
Lassen multiple GPU
Machine .

Experiment with Sandia
ARM machine

Start working towards A21
Dataflow Machine (see
NextPlatform.com

Past and present investments in
I. People
II. good code and algorithm design of
III. a programming model and an
IV. adaptive asynchronous communication-

hiding runtime system
V. with a portability layer
Make it possible to:
(i) independently develop complex physics code

which is then unchanged
(ii) while scaling complex engineering

calculations and
(iii) Using results to drive engineering design
(iv) Provide a viable path to exascale

Summary

	A Portable Applications- Driven Approach to Scalability on Present and Future Exascale Systems
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Addressing the challenges of multi-scale multi-physics applications on varied future architectures
	Addressing the challenges of multi-scale multi-physics applications on varied future architectures
	Uintah development timeline
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	New Uintah Programming Model for Stencil Timestep
	Slide Number 13
	Slide Number 14
	NNSA PSAAP2 Existing Simulations of GE Clean(er) Coal Boilers
	Uintah scales for the Boiler problem on the largest machines that we have access to
	Shenwei TaihuLight Architecture:
	Sunway specific changes Damodar and Zhang Yang IAPM (NSF)
	Weak and Strong Scalability of a Challenging Thermal Radiation Case
	Radiation Overview
	Radiation Overview
	No AMR GPU-Based RMCRT Scalability
	Slide Number 23
	 Task Graph Scaling Challenges at Large Scale
	GPU Strong Scaling on DOE Titan
	Challenge: RMCRT strong scales but does it weak scale?
	RMCRT Communications AMR Weak scaling
	RMCRT WEAK Scaling Results 100 Rays per cell
	Performance Portability Using Kokkos
	Performance Portability Using Kokkos and C ++11 Functors/Lambdas
	Functors and Lambdas in C++11
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Simple Radiative Properties Loop
	Results: Adding Loop-Level Parallelism vs Xeon Core
	Results: Using More Threads per Core
	RMCRT
	Future Work �
	Summary

