, o :) Sandia
Exceptional service in the national interest National

Laboratories

L.Bertagna, M.Deakin, O.Guba, D.Sunderland,
A.Bradley, |.Tezaur, M.Taylor, A.Salinger

Sandia National Laboratories, Albuquerque, NM

September 18th, 2018

SAND 2018-6520 C

@ENERGY

The E3SM and CMDV projects

Kokkos and HOMME

From HOMME to HOMMEXX

Results

September 18th, 2018

=] = = Q>
e ——

~Y

Energy Exascale Earth System Model (E3SM) @&z,

What is E3SM?

= DOE effort for a high resolution earth model.
= Branched from Community Earth System Model (CESM) in 2014.

= Modular library, with several components: atmosphere
dynamics/physics, land, land-ice, ocean, sea-ice, biogeochemistry, ...

= All component can run with variable-resolution, unstructured grids.
= Mostly written in Fortran 90.

= Broad variety of time and space scales.

= 2018: E3SM version 1 is released in April.

September 18th, 2018 3

@ o
National
Laboratories

Project goal is to improve
= trustworthiness of the model for decision support,
= code agility for adapting to exascale architectures,

= productivity through leveraging of cutting-edge computational science.

September 18th, 2018 4

@ o
National
Laboratories

Project goal is to improve
= trustworthiness of the model for decision support,
= code agility for adapting to exascale architectures,
= productivity through leveraging of cutting-edge computational science.

Coding challenge: have a single code base, performant on a variety of
architectures, and cabable of rapidly adapting to new ones.
= Task: study the feasibility of using Kokkos (a library for on-node
parallelism, more on it later) to achieve a single code base which is
performant on a variety of architectures (CPU, MIC, GPU).

= Path: convert a component of E3SM, namely the atmosphere
component HOMME (more on that later), to C++, using Kokkos.

= Metrics: correctness (bit-for-bit with original HOMME), and
performance (on par with original HOMME on CPU/MIC).

September 18th, 2018 5

The Kokkos library Q=N

= Developed at Sandia National Labs, written in C++ (with C++11
required).

= Provides templated constructs for on-node parallel execution: execution
space (host vs device), execution policy (range vs team), parallel
operation (for, scan, reduce).

= Provides template abstraction for a multidimensional array: data type,
memory space (host, device, UVM), layout (left, right, ...), memory
access/handling (atomic, unmanaged, ...).

® Supports several back-ends: Serial, OpenMP, Pthreads, Cuda,
= Available at http://github.com/kokkos/kokkos.

September 18th, 2018 6

(HOMME)

@ o
National
Laboratories

= Component of E3SM (and CESM) for dynamics
and transport in the atmosphere.

= Accounts for 20-25% of total run time of typical
fully-coupled simulation.

= Highly optimized for MPI and OpenMP
parallelism.

= Horizontal (2D) and vertical (1D) differential
operators are decoupled.

= Spectral Element Method (SEM) in the
horizontal direction.

= Eulerian or Lagrangian schemes for vertical
operators.

S[OAQ] [EOTIAA T/
uoneindwod Jo Juawary |

= Solves for 4 prognostic variables (2 horizontal
velocities, temperature, pressure), and the
transport of N tracers (usually, N~10-40).

September 18th, 2018 7

2D element

From HOMME to HOMMEXX Q=

= |ncremental conversion of original Fortran code to C++.
= Heavily tested (~85% of kernels are individually tested).
= Bit-for-bit agreement with original implementation.
= Minimization of architecture-specific code.
= Primary design goals:

® expose parallelism,

B maximize vectorization,
® minimize memory movement.

September 18th, 2018 8

From HOMME to HOMMEXX Q=

= |ncremental conversion of original Fortran code to C++.
= Heavily tested (~85% of kernels are individually tested).
= Bit-for-bit agreement with original implementation.
= Minimization of architecture-specific code.
= Primary design goals:

® expose parallelism,

B maximize vectorization,
® minimize memory movement.

September 18th, 2018 9

HOMMEXX design: exposing parallelism (@i,

= HOMME has 3 layers of nested for loops: element(x # variables), GLL
points, vertical levels.
= Elements and levels independently processed through majority of code.
» 2D differential operators couple GLL points.
= Kokkos supports up to 3 levels of hierarchical parallelism:
= team level: a parallel region over the number of teams (of threads)
= thread level: a parallel region over the number of threads in a team
® vector level: a parallel region over the number of vector lanes of a thread.
= Hierarchical parallelism allows to expose maximum parallelism with
minimal index bookkeping.

September 18th, 2018 10

HOMMEXX design: exposing parallelism (@i,

A simple nested loop:
for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

138

September 18th, 2018 11

HOMMEXX design: exposing parallelism

Sandia
National
Laboratories

A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

P
Expose parallelism by flattening:

for (int idx=0; idx<dim0O*diml*dim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j,k

}

September 18th, 2018

12

HOMMEXX design: exposing parallelism

Sandia
National
Laboratories

A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

P
Expose parallelism by flattening:

for (int idx=0; idx<dim0O*diml*dim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j,k

}

Embarassingly parallel.

September 18th, 2018

13

HOMMEXX design: exposing parallelism (@i,

A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements; ++ie) {
for (int idx=0; idx<NP*NP; 4+idx) {
int i = idx / NP; int j = idx % NP;
double v0 = v(ie,0,i,j); double v1:v(ie 1,i,j);
buf(0,i,j) (J(0,0,i,j)*v0 + J(1,0 1,)*vl)*metdet(i,j);
buf(1,i,j) (J(0,1,i 7J)>1<V0+J(1 1,i,j)*vl)*metdet(i,j);

}

for (int idx=0; idx<NP*NP; 4+idx) {

int i = idx / NP; int j = idx % NP;

double dudx = 0.0, dvdy = 0.0;

for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) = buf((] ik);
dvdy += D(i,k) * buf(1l,k,j);

}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}

September 18th, 2018 14

HOMMEXX design: exposing parallelism (@i,

A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { 4 || over # teams
for (int idx=0; idx<NP*NP; 4+idx) {
int i = idx / NP; int j = idx % NP;
double v0 = v(ie,0,i,j); double v1:v(ie 1,i,j);
buf(0,i,j) (J(0,0,i,j)*v0 + J(1,0 1,)*vl)*metdet(i,j);
buf(1,i,j) (J(0,1,i 7J)>1<V0+J(1 1,i,j)*vl)*metdet(i,j);

}

for (int idx=0; idx<NP*NP; 4+idx) {

int i = idx / NP; int j = idx % NP;

double dudx = 0.0, dvdy = 0.0;

for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) = buf((] ik);
dvdy += D(i,k) * buf(1l,k,j);

}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}

September 18th, 2018 15

HOMMEXX design: exposing parallelism (@i,

A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { 4 || over # teams
for (int idx=0; idx<NPxNP; ++idx) { ——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i, '); double v1: (ie 1,i,j);
buf(0,i,j) = (J(0,0,i,j)*v0 + J(1,0,)*vl)*metdet(i,j);
buf(1,i,j) = (J(0,1,i 7J)>1<V0+J(1 1, J)*vl)*metdet(i,j);

}
for (int idx=0; idx<NP#NP; 4+idx) { é—— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double dudx = 0.0, dvdy = 0.0;
for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) * buf(0,i,k);
dvdy += D(i,k) = buf(1l,k,j);
}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}

September 18th, 2018 16

HOMMEXX design: exposing parallelism @&

Laboratories

A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { 4 || over # teams
for (int idx=0; idx<NPxNP; ++idx) { ——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i, '); double v1: (ie 1,i,j);
(0,i,j) = (J(0,0,i,j)*v0 + J(1,0,)*vl)*metdet(l,J)
i,j) = (J(0,1,1 ,_])*VO + J(1,1, J)*vl)*metdet(SBE

team barrier

for (int idx=0; <NP+NP; ++idx) { ——— || over # threads
int i = idx / NP; in = idx % NP; in a team
double dudx = 0.07

for (int k = 0; k < NP;
dudx += D(j ,k) *
dvdy += D(i,k) * [b

¥

div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

shared within team

}

September 18th, 2018 17

HOMMEXX design: exposing vectorization (@i,

Core data type is a packed (Vector) of N doubles.
On CPU, N varies: KNL/SKX N=8, HSW N=4.
On GPUs, N=1 (no SIMD, only SIMT).

= Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and
vertical levels. But:
= 2D differential operator much more frequent than 1D
vertical integrals, and
= matching N with # vertical level feasible, while
matching N with # of GLL point could become
prohibitive.

S[OAQ] [BOTMOA T/

i

uonendwod Jo Judwalg |

2D element

= Vectoriation over vertical levels (and data laid out
accordingly in memory).

September 18th, 2018 18

Results: tested architectures () =,

(IB) Intel lvy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3
(HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4
(KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4
(SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4

(P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4
(P100) NVidia Pascal: 2 sockets/node, 2 GPUs/socket, 1792 DP cores/GPU
(V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

Note: IB, HSW and KNL tested at large scale, SKX, P100, V100, P9 only
available on testbeds.

September 18th, 2018 19

September 18th, 2018

ong scaling at large scale

25 Strong Scaling for 86,400 Elements

Thousands of Element-Timesteps / Node / Second

FEE0 et w oAy e oW = ™
&
0.5} 1
& & Cori-HSW HOMME V¥ Cori-KNL HOMMEXX
®—@ Cori-HSW HOMMEXX = 8 Edison HOMME
W ¥ Cori-KNL HOMME =—a Edison HOMMEXX
0.0 L T T T T
Y 6 < > 6 o % O \{,,z
6 P Y Y % 5
¢ 5% Ogoo

Number of Compute Nodes

@ National

Sandia

|
Laboratories

20

Results: single node performance (40 tracers)

Sandia
National
Laboratories

»
wn

Single Node or GPU

o8 HSW 32x2
® @ HSW 2x32
< P100

B8 Power9 40x2
*— SKX 48x1
[* % SKX 24x2
¥¥ KNL 64x2
3.0} ¥ ¥ KNL1x128
44 V100

A-A 1B24x1

&
=)

w
%)

N
n

N
=)

g
%)

el
=4
o
o
L]
[%2]
<
pu}
a
V)
=
o
(]
°
o
=4
<
0
Q
OJ
2
n
v
£
I
o
f=4
Q
€
K
w
s
o
0
°
c
©
a
3>
o
=
=

1.0F &
o 'S A A A D AAA A
0.5
0.0
16 32 64 128 256 512 1024 2048
Number of Elements
—Low Workload High—

September 18th, 2018

yStH—

Aouatoys

—moT

Power consumption
(at high workload):

= IB: 260W

= HSW: 360W

KNL: 260W

SKX: 330W

PO: 360W (?)
P100: 190W
V100: 200W

21

o Sandia
Results: single node performance (no tracers) @&z,

Single Node or GPU: No Tracers

§ Z:: fiow 212 [1 Power consumption
5 | E (at high workload):
s I = IB: 260W
2 1 = HSW: 360W
5 I = KNL: 260W
E | |2 = SKX: 330W
2 1 = P9: 360W (?)
g 1 = P100: 190W
£ : i = \/100: 200W
E 016 32 64 128 256 512 1024 2048 4096 8192
Number of Elements
— Low Workload High—

September 18th, 2018 22

Conclusions () =,

= With Kokkos, HOMMEXX can run on multiple architectures with a
(mostly) single implementation.

= HOMMEXX slightly faster than HOMME on CPU/MIC (~ 1.1x on
HSW, and up to 1.4x on KNL).

= Reasonable performance on GPUs. Need to test performance with
NVLink 2.0.

m Skylake-like architectures could become very interesting for E3SM.

» C++ and Kokkos is a viable path to achieve a performance portable
code.

September 18th, 2018 23

	The E3SM and CMDV projects
	Kokkos and HOMME
	From HOMME to HOMMEXX
	Results

