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Energy Exascale Earth System Model (E3SM) @&z,

What is E3SM?

= DOE effort for a high resolution earth model.
= Branched from Community Earth System Model (CESM) in 2014.

= Modular library, with several components: atmosphere
dynamics/physics, land, land-ice, ocean, sea-ice, biogeochemistry, ...

= All component can run with variable-resolution, unstructured grids.
= Mostly written in Fortran 90.

= Broad variety of time and space scales.

= 2018: E3SM version 1 is released in April.
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Project goal is to improve
= trustworthiness of the model for decision support,
= code agility for adapting to exascale architectures,

= productivity through leveraging of cutting-edge computational science.
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Project goal is to improve
= trustworthiness of the model for decision support,
= code agility for adapting to exascale architectures,
= productivity through leveraging of cutting-edge computational science.

Coding challenge: have a single code base, performant on a variety of
architectures, and cabable of rapidly adapting to new ones.
= Task: study the feasibility of using Kokkos (a library for on-node
parallelism, more on it later) to achieve a single code base which is
performant on a variety of architectures (CPU, MIC, GPU).

= Path: convert a component of E3SM, namely the atmosphere
component HOMME (more on that later), to C++, using Kokkos.

= Metrics: correctness (bit-for-bit with original HOMME), and
performance (on par with original HOMME on CPU/MIC).
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The Kokkos library Q=N

= Developed at Sandia National Labs, written in C++ (with C++11
required).

= Provides templated constructs for on-node parallel execution: execution
space (host vs device), execution policy (range vs team), parallel
operation (for, scan, reduce).

= Provides template abstraction for a multidimensional array: data type,
memory space (host, device, UVM), layout (left, right, ...), memory
access/handling (atomic, unmanaged, ...).

® Supports several back-ends: Serial, OpenMP, Pthreads, Cuda, ....
= Available at http://github.com/kokkos/kokkos.
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= Component of E3SM (and CESM) for dynamics
and transport in the atmosphere.

= Accounts for 20-25% of total run time of typical
fully-coupled simulation.

= Highly optimized for MPI and OpenMP
parallelism.

= Horizontal (2D) and vertical (1D) differential
operators are decoupled.

= Spectral Element Method (SEM) in the
horizontal direction.

= Eulerian or Lagrangian schemes for vertical
operators.
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= Solves for 4 prognostic variables (2 horizontal
velocities, temperature, pressure), and the
transport of N tracers (usually, N~10-40).
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From HOMME to HOMMEXX Q=

= |ncremental conversion of original Fortran code to C++.
= Heavily tested (~85% of kernels are individually tested).
= Bit-for-bit agreement with original implementation.
= Minimization of architecture-specific code.
= Primary design goals:

® expose parallelism,

B maximize vectorization,
® minimize memory movement.
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HOMMEXX design: exposing parallelism (@i,

= HOMME has 3 layers of nested for loops: element(x # variables), GLL
points, vertical levels.
= Elements and levels independently processed through majority of code.
» 2D differential operators couple GLL points.
= Kokkos supports up to 3 levels of hierarchical parallelism:
= team level: a parallel region over the number of teams (of threads)
= thread level: a parallel region over the number of threads in a team
® vector level: a parallel region over the number of vector lanes of a thread.
= Hierarchical parallelism allows to expose maximum parallelism with
minimal index bookkeping.

September 18th, 2018 10




HOMMEXX design: exposing parallelism (@i,

A simple nested loop:
for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

138
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A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

P
Expose parallelism by flattening:

for (int idx=0; idx<dim0O*diml*dim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j,k

}
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A simple nested loop:

for (int i=0; i<dim0; ++i) {
for (int j=0; j<diml; ++j) {
for (int k=0; k<dim2; ++k) {
// do some work on i,j,k

P
Expose parallelism by flattening:

for (int idx=0; idx<dim0O*diml*dim2; ++idx) {
int i = idx / (dimlxdim2);
int j = idx / dim2;
int k = idx % dim2;
// do some work on i,j,k

}

Embarassingly parallel.
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HOMMEXX design: exposing parallelism (@i,

A more complex scenario: divergence on the sphere
for (int ie=0; ie<num_elements; ++ie) {
for (int idx=0; idx<NP*NP; 4+idx) {
int i = idx / NP; int j = idx % NP;
double v0 = v(ie,0,i,j); double v1:v(ie 1,i,j);
buf(0,i,j) (J(0,0,i,j)*v0 + J(1,0 1, )*vl)*metdet(i,j);
buf(1,i,j) (J(0,1,i 7J)>1<V0+J(1 1,i,j)*vl)*metdet(i,j);

}

for (int idx=0; idx<NP*NP; 4+idx) {

int i = idx / NP; int j = idx % NP;

double dudx = 0.0, dvdy = 0.0;

for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) = buf((] ik);
dvdy += D(i,k) * buf(1l,k,j);

}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}
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HOMMEXX design: exposing parallelism (@i,

A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { 4 || over # teams
for (int idx=0; idx<NPxNP; ++idx) { ——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i, '); double v1: (ie 1,i,j);
buf(0,i,j) = (J(0,0,i,j)*v0 + J(1,0, )*vl)*metdet(i,j);
buf(1,i,j) = (J(0,1,i 7J)>1<V0+J(1 1, J)*vl)*metdet(i,j);

}
for (int idx=0; idx<NP#NP; 4+idx) { é—— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double dudx = 0.0, dvdy = 0.0;
for (int k = 0; k < NP; ++k) {
dudx += D(j ,k) * buf(0,i,k);
dvdy += D(i,k) = buf(1l,k,j);
}
div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

}
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A more complex scenario: divergence on the sphere

for (int ie=0; ie<num_elements; ++ie) { 4 || over # teams
for (int idx=0; idx<NPxNP; ++idx) { ——— || over # threads
int i = idx / NP; int j = idx % NP; in a team
double v0 = v(ie,0,i, '); double v1: (ie 1,i,j);
(0,i,j) = (J(0,0,i,j)*v0 + J(1,0, )*vl)*metdet(l,J)
i,j) = (J(0,1,1 ,_])*VO + J(1,1, J)*vl)*metdet( SBE

team barrier

for (int idx=0; <NP+NP; ++idx) { ——— || over # threads
int i = idx / NP; in = idx % NP; in a team
double dudx = 0.07

for (int k = 0; k < NP;
dudx += D(j ,k) *
dvdy += D(i,k) * [b

¥

div(ie,i,j) = (dudx+dvdy) / (metdet(i,j)*rearth);

shared within team

}

September 18th, 2018 17




HOMMEXX design: exposing vectorization (@i,

Core data type is a packed (Vector) of N doubles.
On CPU, N varies: KNL/SKX N=8, HSW N=4.
On GPUs, N=1 (no SIMD, only SIMT).

= Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and
vertical levels. But:
= 2D differential operator much more frequent than 1D
vertical integrals, and
= matching N with # vertical level feasible, while
matching N with # of GLL point could become
prohibitive.
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2D element

= Vectoriation over vertical levels (and data laid out
accordingly in memory).
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Results: tested architectures () =,

(IB) Intel lvy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3
(HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4
(KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4
(SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4

(P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4
(P100) NVidia Pascal: 2 sockets/node, 2 GPUs/socket, 1792 DP cores/GPU
(V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

Note: IB, HSW and KNL tested at large scale, SKX, P100, V100, P9 only
available on testbeds.
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ong scaling at large scale

25 Strong Scaling for 86,400 Elements

Thousands of Element-Timesteps / Node / Second
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Results: single node performance (40 tracers)
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Power consumption
(at high workload):

= IB: 260W

= HSW: 360W

KNL: 260W

SKX: 330W

PO: 360W (?)
P100: 190W
V100: 200W
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Results: single node performance (no tracers) @&z,

Single Node or GPU: No Tracers
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Conclusions () =,

= With Kokkos, HOMMEXX can run on multiple architectures with a
(mostly) single implementation.

= HOMMEXX slightly faster than HOMME on CPU/MIC (~ 1.1x on
HSW, and up to 1.4x on KNL).

= Reasonable performance on GPUs. Need to test performance with
NVLink 2.0.

m Skylake-like architectures could become very interesting for E3SM.

» C++ and Kokkos is a viable path to achieve a performance portable
code.
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