Understanding Atmospheric Rivers in a Future, Warmer Climate

Alexander Massa

NESSI Intern (NCAR) Millersville University

INTRODUCTION

- \rightarrow The climate is warming
- → As temperatures increase, atmospheric water vapor also increases due to the Clausius-Clapeyron relationship
- \rightarrow Atmospheric rivers (ARs) transport large amounts of water vapor
- \rightarrow How will climate change impact ARs?

METHODS

- → AR case study dates were identified using noview
- \rightarrow Plots of ARs were created using data from the Atmospheric River Tracking Method Intercomparison Project (ARTMIP)
- \rightarrow To help with the development of code, took introductory courses to NCL and Python

RESULTS

 \rightarrow RCP 8.5[^] plots depict increases in AR size and Integrated Vapor Transport (IVT) values in future ARs compared to ARs detected using MERRA v2 and historical climatology^

[^]Caveat: plots are case studies, do not represent means and trends

CONCLUSIONS

- \rightarrow ARs play an important role in transporting large amounts of water vapor to regions across the globe
- \rightarrow Due to the Clausius-Clapeyron relationship and increasing temperatures, future ARs could potentially transport more water vapor
- \rightarrow AR intensity and size depends on the type of algorithm being used

FUTURE WORK

- \rightarrow Move away from case studies and utilize entire ARTMIP datasets to identify means and trends in future ARs
- → Analyze characteristic differences between historic and future ARs

Acknowledgements

Christine Shields, Jerry Cyccone, AJ Lauer, Virginia Do, Maria Molina, NCAR, and the NESSI and SIParCS teams

Atmospheric river size and intensity depends on the type of detection algorithm used.

*Each colored line represents a separate AR identification method

All-Hist AR Feb 27, 1982 50N 40N 30N 20N

140W RCP 8.5 AR Jan 19, 2099

90

