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DEEP LEARNING 
ARCHITECTURES
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DEEP LEARNING MODEL ZOO

a

RNNCNN

Unet

ResNet DenseNet

Transformer

AutoEncoder VAE
GAN

Neural Turing Machine

NeuralODE

Partial Convolutions Bayesian Neural Net
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DEEP LEARNING’S CENTRAL PREMISE

LEARN FUNCTIONS 

FROM DATA

FEATURE ENGINEERING 

NOT REQUIRED

FIT

x

y
f(x)
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THE MASTER ALGORITHM
Universal Machine Learning is an Ideal, Not Yet a Reality

“How to build 

AGI and to use 

it safely”

“How to Solve 

Global Climate 

Change”

TOPIC DISSERTATION
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TRACKING THE STATE OF THE ART

Arxiv Sanity Preserver Papers With Code



6

Deep Learning Basics 

Fully Connected Networks

CNNs

ResNets

Encoder-Decoders

Masked Convolutions

Generative Models

Transformers

AutoML

AGENDA
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DEEP LEARNING BASICS
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𝒇(𝒙)

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

INPUTS

𝒚𝟏

𝒚𝟐

𝒚𝟑

𝒚𝟒

𝒚𝟓

𝒚𝟔

OUTPUTS

Find this, automatically

REVERSE-ENGINEER FUNCTIONS FROM EXAMPLES
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IT’S A NEW WAY TO BUILD SOFTWARE

TEMP, PRESSURE, MOISTURE

PROBABILITY OF RAIN

FUNCTION 1

FUNCTION 2

FUNCTION 3

FUNCTION 5

FUNCTION 4

Function1(T,P,Q)

return y

HAND-WRITTEN FUNCTION

Convert expert 
knowledge into a function

LEARNED FUNCTION

Reverse-engineer a function 
from inputs / outputs

Function1(T,P,Q)

return y

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

do_microphysics()

y = get_precipitation()

return y

Function1(T,P,Q)

A = relu( w1 * [T,P,Q] + b1)

B = relu( w2 * A       + b2)

C = relu( w3 * B       + b3)

D = relu( w4 * C       + b4)

E = relu( w5 * D       + b5)

y = sigmoid(w6 * E     + b6)

return y
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COMPLEX PHENOMENA ARE BEST DESCRIBED IMPLICTLY

EXAMPLE: ATMOSPHERIC RIVER- 3 -

Characterizing Extreme Weather 

in a Changing Climate
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FORWARD AND REVERSE ENGINEERING 
ARE COMPLIMENTARY

SOFTWARE DEVELOPMENT

ENGINEERED
PROGRAMMED

LABOR INTENSIVE
EXPLICIT

EXPLAINABLE
HEURISTIC

SIMPLE
FROM EXPERTISE

MACHINE LEARNING

REVERSE ENGINEERED
LEARNED
AUTOMATIC
IMPLICIT
SUBTLE
REALISTIC
COMPLEX
FROM EXAMPLES

For best results, combine them
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MACHINE LEARNING IS CURVE FITTING, GENERALIZED

x

y

y=f(x)
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AI, MACHINE LEARNING, DEEP LEARNING

EXPERT SYSTEMS 

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED 

LEARNS BOTH OUTPUT AND FEATURES FROM DATA 

EXPERT SYSTEMS 

EXECUTE HAND-WRITTEN ALGORITHMS AT HIGH SPEED 

TRADITIONAL ML
LEARN FROM EXAMPLES USING HAND-CRAFTED 
FEATURES
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ARTIFICIAL NEURONS
Are simple equations with a set of adjustable parameters

Biological neuron

w1 w2 w3

x1 x2 x3

y

y=f(w1x1+w2x2+w3x3)

Artificial neuron

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
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ADJUST MODEL CAPACITY TO FIT YOUR DATA
A good model is one that generalizes to new data

UNDERFIT GOOD FIT OVER FIT
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KEEP TRAINING AND TEST DATA SEPERATE
KEEP TEST, TRAINING, AND VALIDATION DATA SEPERATE
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TRAINING
DATA, MODEL, LOSS, AND OPTIMIZER

MODEL

DATA

LOSS FCN

OPTIMIZER

Hi, My name 

is Adam!
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TRAINING: SEARCHING FOR A GOOD SOLUTION

Adjust W1,W2 to minimize loss

COULD USE:

• Grid Search

• Evolutionary Algorithms

• Conjugate Gradient

• Newton’s method

• Other 2nd order methods

ACTUALLY USE:

• Gradient Descent

Model training is a form of search, performed by the optimizer.

LOSS

W1

W2

Goal: Find a point near here
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GRADIENT DESCENT
Finding as solution is as easy as falling down a hill

Start with 
random weights

Compute the gradient 
and follow it downhill

Stop when
the error is small
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BACKPROPAGATION
Compute the gradient, by efficiently assigning blame

Prediction

Error
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AUTOGRAD
Let a framework keep track of your gradient, so you don’t have to
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WHAT YOU NEED TO MAKE IT WORK
You need three main ingredients (and some skill)

ML FRAMEWORK GPU ACCELERATORLARGE QUANTITIES OF DATA
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DEEP LEARNING FRAMEWORK
Many frameworks to choose from (but not Fortran)

JuliaC++

z

Python
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GPUS MAKE MACHINE LEARNING PRACTICAL
Train in a day? Or a month?
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LEARNED FUNCTIONS ARE GPU ACCELERATED
Next level software. No porting required.

DATA GPU ACCELERATED
FUNCTIONS
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HOW CAN I GET ACCESS TO A POWERFUL GPU?
Many way to take advantage of NVIDIA GPUs for Deep Learning

Cloud Computing Services 
(Free hours to start)

Google Colab
(1 Free NVIDIA GPU)

NVIDIA Quadro 
Laptop or Workstation

National Supercomputers 
(Apply for compute)
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FULLY CONNECTED
NETWORKS 

(MULTI-LAYER PERCPTRONS)
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FULLY CONNECTED NETWORKS
A given neuron is connected to every neuron in the previous layer

INPUT OUTPUTLAYER1 LAYER 2
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SINGLE LAYER NEURAL NETWORKS
A series expansion over basis functions 𝜙.

𝒙

𝒚

𝜙1 𝜙2 𝜙3 𝜙4𝑦 =෍

𝑖

𝑤𝑖 𝜙𝑖(𝑥 + 𝑏𝑖)

TAYLOR SERIES

FOURIER SERIES

RELU

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑

sin(𝒙) 𝒔𝒊𝒏 (𝟐𝒙) 𝒔𝒊𝒏 (𝟑𝒙) 𝒔𝒊𝒏 (𝟒𝒙)

(𝒙 > 𝟎) ? 𝒙 ∶ 𝟎
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TWO LAYER NEURAL NETWORKS
Learn the function and the basis functions at the same time

𝒙

𝜙1 𝜙2 𝜙3 𝜙4

𝒚

L2: LEARNED BASIS FCNS

L1: RELU BASIS FCNS
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DEEPER NEURAL NETWORKS
More layers allows for more levels of abstraction

Input Result

Input Low-level features Mid-level features High-level features

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

Probability

Image is

A Face

Output
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Large Scale Visual Recognition Challenge 2012

The Imagenet competition: Automatically classify images from 1000 different categories
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CONVOLUTIONAL NEURAL 
NETWORKS
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WHAT ARE CNNS USED FOR?
Problems with translational invariance

Computational Physics
Invariance in 3d space

Audio and Time Series
Invariance in time

Computer Vision
Invariance in 2d space
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COMPUTER VISION TASKS
Each task requires a different model and data setup

Image Credit: NERSC
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CLASSIFICATION
Example: Classifying Land Use

UC Merced Land Use Database
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ONE-HOT ENCODING
Input: Pixels, Output: One-hot encoding

https://blog.carbonteq.com/practical-image-recognition-with-tensorflow/

OUTPUT: ONE-HOT VECTOR
INPUT:PIXEL VALUES

Hot! Not so hotNot so hot
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IMAGES ARE POINTS, WITH MANY DIMENSIONS

1

2

3

4

5

IN: 3-D Vector OUT: 1 hot vector IN: 784-D Vector OUT: 1-hot vector

1

2

3

4

5

6

0
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FULLY CONNECTED NETWORKS AND IMAGES DON’T MIX

FLATTEN 1 Million 
Pixels

1 Million 
neurons
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TRANSLATIONAL EQUIVARIANCE
Objects in nature look the same from place to place
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0
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1

1

1

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

-4

1

0

-8

Source 

Pixel

Convolutional kernel 

(Feature Detector) 

New pixel value 

(destination pixel)

Center element of the kernel is placed over 

the source pixel. The source pixel is then 

replaced with a weighted sum of itself and 

nearby pixels.

WHAT IS A CONVOLUTION?
A small matrix transformation, applied at each point of the image
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CONVOLUTION EXAMPLE: SOBEL FILTER

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator
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CONVOLUTION EXAMPLE: SOBEL FILTER

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator
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CLASSIFICATION
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CLASSIFIER EVOLUTION OVER TIME

1998 2014 2016 2019

2012 2015 2017

LeNet VGG and Inception Xception DenseNet

AlexNet ResNet ResNext-50

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
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LENET-5
(1988) Yann LeCun. Hand written recognition. 60k parameters.

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

https://en.wikipedia.org/wiki/LeNet. 

https://en.wikipedia.org/wiki/LeNet


47

IMAGENET ILSVR COMPETITION
Large Scale Visual Recognition Competition (2010-2017)

https://en.wikipedia.org/wiki/ImageNet

https://en.wikipedia.org/wiki/ImageNet
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ALEXNET
(2012): Krizevsky, Sutskever, Hinton. ImageNet winner.

https://en.wikipedia.org/wiki/AlexNet
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VGG-16
2014. ImageNet runner up. Simple, clean architecture.
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Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS

FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan∗ & Andrew Zisserman+

Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3× 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16–19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ConvNets) have recently enjoyed a great success in large-scale im-
age and video recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et al., 2014;
Simonyan & Zisserman, 2014) which has become possible due to the large public image reposito-
ries, such as ImageNet (Deng et al., 2009), and high-performance computing systems, such as GPUs
or large-scale distributed clusters (Dean et al., 2012). In particular, an important role in the advance
of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al., 2014), which has served as a testbed for a few
generations of large-scale image classification systems, from high-dimensional shallow feature en-
codings (Perronnin et al., 2010) (the winner of ILSVRC-2011) to deep ConvNets (Krizhevsky et al.,
2012) (the winner of ILSVRC-2012).

With ConvNets becoming more of a commodity in the computer vision field, a number of at-
tempts have been made to improve the original architecture of Krizhevsky et al. (2012) in a
bid to achieve better accuracy. For instance, the best-performing submissions to the ILSVRC-
2013 (Zeiler & Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive window size and
smaller stride of the first convolutional layer. Another line of improvements dealt with training
and testing the networks densely over the whole image and over multiple scales (Sermanet et al.,
2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture
design – its depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which is feasible due to the use of very
small (3× 3) convolution filters in all layers.

As a result, we come up with significantly more accurate ConvNet architectures, which not only
achieve the state-of-the-art accuracy on ILSVRC classification and localisation tasks, but are also
applicable to other image recognition datasets, where they achieve excellent performance even when
used as a part of a relatively simple pipelines (e.g. deep features classified by a linear SVM without
fine-tuning). We have released our two best-performing models1 to facilitate further research.

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the

∗ current affiliation: Google DeepMind +current affiliation: University of Oxford and Google DeepMind
1
http://www.robots.ox.ac.uk/˜vgg/research/very_deep/

1
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INCEPTION-V1 (GOOGLENET)
2014. Train different size convolutions in parallel
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FULLY CONVOLUTIONAL NETWORKS (FCN)
2015: Convert fully connect layers into convolutions of the same size

Replace fully connect networks
with equivalent 1x1 convolutions
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RESNETS
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MODELING TRENDS: DEEPER AND LARGER

1998 2014 2016 2019

2012 2015 2017

LeNet
5 Layers, 

60 k Params

VGG-16
16 Layers

138 M Params
Xception DenseNet

AlexNet
8 layers

60 M Params

ResNet
50 Layers

23 M Params
ResNext-50

Source: Source information is 14 pt, italic
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PROBLEM: VANISHING GRADIENTS
Error signal decays exponentially as it propagates backward through the network

DEEPER NETWORKS WERE HARDER TO TRAINERROR SIGNAL VANISHES DURING BACKPROP

https://www.arxiv-vanity.com/papers/1512.03385/
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PROBLEM: THE MISSING IDENTITY
2015: Neural nets had a hard time learning the identity function!

y=x?
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RESNETS AND SKIP CONNECTIONS
(aka Highway Networks)

https://arxiv.org/abs/1712.09913

https://jithinjk.github.io/blog/nn_loss_visualized.md.html

ADD THE INPUT TO OUTPUT DRAMTICALLY SIMPLIFIES THE LOSS LANDSCAPE

https://arxiv.org/pdf/1512.03385.pdf

https://jithinjk.github.io/blog/nn_loss_visualized.md.html
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RESNET-50
2015 Microsoft Research. 50 Layers, 23M params.

https://arxiv.org/pdf/1409.1556.pdf
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DENSENET
2017

https://arxiv.org/abs/1608.06993
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NEURAL-ODES
2018

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt* , David Duvenaud
University of Toronto, Vector Institute

{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-
box differential equation solver. These continuous-depth models have constant
memory cost, adapt their evaluation strategy to each input, and can explicitly trade
numerical precision for speed. Wedemonstratetheseproperties in continuous-depth
residual networks and continuous-time latent variable models. Wealso construct
continuous normalizing flows, a generative model that can train by maximum
likelihood, without partitioning or ordering the data dimensions. For training, we
show how to scalably backpropagate through any ODE solver, without access to its
internal operations. This allows end-to-end training of ODEs within larger models.

1 Introduction
Residual Network ODE Network

Figure 1: Left: A Residual network definesa
discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms thestate.
Both: Circles represent evaluation locations.

Models such as residual networks, recurrent neural
network decoders, and normalizing flows build com-
plicated transformations by composing a sequence of
transformations to a hidden state:

h t + 1 = h t + f (h t ,✓t ) (1)

where t 2 { 0 . . . T} and h t 2 RD . These iterative
updates can be seen as an Euler discretization of a
continuous transformation (Lu et al., 2017; Haber
and Ruthotto, 2017; Ruthotto and Haber, 2018).

What happensasweadd more layersand takesmaller
steps? In the limit, we parameterize the continuous
dynamics of hidden units using an ordinary differen-
tial equation (ODE) specified by aneural network:

dh(t)

dt
= f (h(t), t ,✓) (2)

Starting from the input layer h(0), we can define the output layer h(T ) to be the solution to this
ODE initial value problem at some time T . This value can be computed by a black-box differential
equation solver, which evaluates the hidden unit dynamics f wherever necessary to determine the
solution with the desired accuracy. Figure 1 contrasts these two approaches.

Defining and evaluating models using ODE solvers has several benefits:

Memory efficiency In Section 2, we show how to computegradients of ascalar-valued loss with
respect to all inputsof any ODE solver, without backpropagating through theoperationsof thesolver.
Not storing any intermediatequantitiesof theforward passallowsusto train our modelswith constant
memory cost as a function of depth, a major bottleneck of training deep models.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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https://www.depthfirstlearning.com/2019/NeuralODEs

https://www.depthfirstlearning.com/2019/NeuralODEs
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ENCODER-DECODERS
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ENCODERS AND DECODERS
Networks connecting high and low dimensional spaces
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ENCODER DECODER

Low 
Dimensional
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CLASSIFIER: IMAGE → CLASS ENCODER

O
N

E
-H

O
T
 V

E
C
T
O

R

INPUT IMAGE ENCODER

• Low
• Storm
• Cat 1
• Cat 2
• Cat 3
• Cat 4
• Cat 5
• Other
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IMAGE TO IMAGE
Encoder-Decoder network with Images at both ends

L
A
T
E
N

T
 V

E
C
T
O

R

Input

Image
ENCODER DECODER

Output

Image

https://research.cs.cornell.edu/megadepth/http://liu.diva-portal.org/smash/get/diva2:1182913/FULLTEXT01.pdf

SEGMENTATION

DATA FUSION

DEPTH PREDICTION
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VOLUME TO VOLUME
Input and Output can have 1,2,3 spatial dimensions or more

https://arxiv.org/pdf/1811.06533.pdf

D3M: Learning to Predict the Cosmological Structure Formation 

L
A
T
E
N

T
 V

E
C
T
O

R

ENCODER DECODER

DISPLACEMENT FIELD DENSITY FIELD



65

AUTOENCODER
Adaptive Data Compression and Noise Removal

L
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Input

Image
F(X) F-1(X)

Output

Image

INPUT RECONSTRUCTED OUTPUT

Compressed
Representation
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Input

Image
F(X) F-1(X)

Output

Image

INPUT RECONSTRUCTED OUTPUT

Compressed
Representation

Denoising-autoencoder
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F(X) F-1(X)

WHY IS MY DECODER OUTPUT FUZZY?
Decoded Output is Not Unique

0
1
2
3
4
5
6
7
8
9

Many instances map 
to one class

One class represents 
many instances
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UNET (2015)
Nested encoder-decoders at multiple spatial scales
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U-Net: Convolutional Networks for Biomedical Image Segmentation 

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

https://arxiv.org/pdf/1505.04597.pdf
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DEEPLAB V3+
Another encoder decoder design for accurate segmentation
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MASKED CONVOLUTIONS 
AND INPAINTING
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PARTIAL CONVLUTIONS
Convolutions that ignore missing or invalid data

Masked Convolution Operation
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Data
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https://arxiv.org/abs/1804.07723https://www.nature.com/articles/s41561-020-0582-5

https://arxiv.org/abs/1804.07723
https://www.nature.com/articles/s41561-020-0582-5
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TASK: INPAINTING
Repair an image that has missing data

Image Inpainting for Irregular Holes Using Partial Convolutions 
Guilin Liu Fitsum A. Reda Kevin J. Shih Ting-Chun Wang Andrew Tao Bryan Catanzaro 

NVIDIA Corporation 
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INPAINTING APPLICATIONS
Fill in missing observations, or remove unwanted objects

GOES-17: Repair Missing Data Remove Clouds, Haze, Shadows
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TRANSFER LEARNING FOR INPAINTING
Train on model data to repair observational data

https://www.nature.com/articles/s41561-020-0582-5

https://www.nature.com/articles/s41561-020-0582-5
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GENERATIVE MODELS
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GENERATIVE MODELS
Generate Specific Examples from a Learned Distribution

https://arxiv.org/pdf/1812.04948.pdf

A Style-Based Generator Architecture for Generative Adversarial Networks 

DECODER
(generative)

F
E
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GENERATED

IMAGE

https://thispersondoesnotexist.com



76

GENERATE NEW EXAMPLES
You can generate a new example of nearly any type of data

SAMPLE GENERATION
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VAE: VARIATIONAL AUTOENCODER
An autoencoder that learns Gaussian Distributions

Input

Image
F-1(X)

INPUT GENERATED EXAMPLE

S
A
M

P
L
E
R

F(X)

𝜇

𝜎

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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VAE: VARIATIONAL AUTOENCODER
An autoencoder that learns Gaussian Distributions

Input

Image
F-1(X)

INPUT GENERATED EXAMPLE

S
A
M

P
L
E
R

F(X)

!

"

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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GAN: GENERATIVE ADVERSARIAL NETWORK
A trick for training a decoder to produce samples indistinguishable from real ones

DECODER

FEATURE VECTOR

RANDOM

INPUT

OUTPUT

cCLASSIFIER
REAL  OR 

FAKE?

REAL IMAGES

DISCRIMINATOR (Adaptive Loss)GENERATOR

https://en.wikipedia.org/wiki/Generative_adversarial_network

https://en.wikipedia.org/wiki/Generative_adversarial_network


79

CONDITIONAL GAN
Generate Synthetic Images, conditioned upon the input

DECODER
LATENT

VECTOR

RANDOM
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https://arxiv.org/pdf/2006.01047.pdf
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CONDITIONAL GAN EXAMPLE
Map from satellite observations to model variables

doi:10.5065/D6BZ64XQ 

GOES-15 BAND 3 GENERATED WATER VAPOR TARGET: GFS WATER VAPOR
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RNNS, ATTENTION, AND 
TRANSFORMERS
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ATTENTION AND TRANSFORMERS

2014 2015 2017 2019

2015 2016 2018

Sequence to 
sequence

Visual attention Self Attention DETR

Align & Translate Hierarchical attention BERT

Source: Source information is 14 pt, italic
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RECURRENT NEURAL NETS
(1986) Neural networks for sequences

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

RNN, Unrolled over time

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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LSTM
(1997) Long Short-term Memory Units

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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SEQUENCE TO SEQUENCE
(2014) Encoder-decoder pattern for sequences

I    taught   my   machine  to   learn

Ich brachte meiner Maschine  das  Lernen   bei

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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ATTENTION
Adjustable weights based on context

https://www.datasciencecentral.com/profiles/blogs/seq2seq
https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-3/
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ATTENTION ENCODER-DECODER
A more accurate way to translate long sequences

https://medium.com/datadriveninvestor/attention-in-rnns-321fbcd64f05

RNN RNN + ATTENTION
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. Thefirst isamulti-head self-attention mechanism, and thesecond is asimple, position-
wise fully connected feed-forward network. Weemploy a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: Thedecoder isalso composed of astack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over theoutput of theencoder stack. Similar to theencoder, weemploy residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i .

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

THE TRANSFORMER
(2017) Attention is all you need!

http://jalammar.github.io/illustrated-transformer/ https://arxiv.org/abs/1706.03762

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk , and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk , and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on aset of queries simultaneously, packed together
into amatrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

At tent ion(Q, K , V ) = softmax(
QK T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additiveattention computes thecompatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. Wesuspect that for large values of
dk , the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing asingle attention function with dmodel -dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk , dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv -dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random

variables with mean 0 and variance 1. Then their dot product, q · k =
P dk

i = 1 qi ki , has mean 0 and variance dk .

4
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GPT AND BERT
The Transformer has enabled a series of massive language models

encoder-decoder-transformersbest language papers
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GPT-3
175 Billion

Params

https://medium.com/huggingface/encoder-decoders-in-transformers-a-hybrid-pre-trained-architecture-for-seq2seq-af4d7bf14bb8
https://medium.com/@Moscow25/the-best-deep-natural-language-papers-you-should-read-bert-gpt-2-and-looking-forward-1647f4438797
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DETNET
(2020) End-to-end object detection with transformers

End-to-End Object Detect ion with Transformers 7

CNN

set of image features

transformer 

encoder

…

…

positional encoding

+
transformer 

decoder

class,

box

class,

box

no 

object

no 

object

FFN

FFN

FFN

FFN

object queries

backbone encoder decoder prediction heads

Fig. 2: DETR uses a convent ional CNN backbone to learn a 2D representat ion of an

input image. The model flat tens it and supplements it with a posit ional encoding before

passing it into a t ransformer encoder. A t ransformer decoder then takes as input a

small fixed number of learned posit ional embeddings, which we call object queries, and

addit ionally at tends to the encoder output . We pass each output embedding of the

decoder to a shared feed forward network (FFN) that predicts either a detect ion (class

and bounding box) or a “no object” class.

Tr ansfor mer decoder . The decoder follows the standard architecture of the

t ransformer, t ransforming N embeddings of size d using mult i-headed self- and

encoder-decoder at tent ion mechanisms. The di↵erence with the original t rans-

former is that our model decodes the N objects in parallel at each decoder layer,

while Vaswani et al. [47] use an autoregressive model that predicts the output

sequence one element at a t ime. We refer the reader unfamiliar with the concepts

to the supplementary material. Since the decoder is also permutat ion-invariant ,

the N input embeddings must be di↵erent to produce di↵erent results. These in-

put embeddings are learnt posit ional encodings that we refer to as object queries,

and similarly to the encoder, we add them to the input of each at tent ion layer.

The N object queries are t ransformed into an output embedding by the decoder.

They are then independently decoded into box coordinates and class labels by

a feed forward network (described in the next subsect ion), result ing N final

predict ions. Using self- and encoder-decoder at tent ion over these embeddings,

the model globally reasons about all objects together using pair-wise relat ions

between them, while being able to use the whole image as context .

P r edict ion feed-for war d networ ks (FFN s) . The final predict ion is com-

puted by a 3-layer perceptron with ReLU act ivat ion funct ion and hidden dimen-

sion d, and a linear project ion layer. The FFN predicts the normalized center

coordinates, height and width of the box w.r.t . the input image, and the lin-

ear layer predicts the class label using a softmax funct ion. Since we predict a

fixed-size set of N bounding boxes, where N is usually much larger than the

actual number of objects of interest in an image, an addit ional special class la-

bel ? is used to represent that no object is detected within a slot . This class

plays a similar role to the “ background” class in the standard object detect ion

approaches.

A uxi l iar y decoding losses. We found helpful to use auxiliary losses [1] in

decoder during training, especially to help the model output the correct number
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AUTO ML
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AUTO ML
Automating the work of the data scientist

https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
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NEURAL ARCHITECTURE SEARCH

2016 2018 2018 2019

2017 2018 2019

NAS with 
Reinforcement  

Learning

Efficient NAS via 
Parameter Sharing

AutoKeras
DARTS: 

Differentiable NAS

Learning Transferable 
Architectures

Progressive
NAS

Stochastic
NAS

https://heartbeat.fritz.ai/research-guide-for-neural-architecture-search-b250c5b1b2e5

Automating model design and selection
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NAS
Google Brain 2016
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EFFICIENT NAS
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Efficient Neural Architecture Search via Parameter Shar ing

Hieu Pham * 1 2 Melody Y. Guan * 3 Barret Zoph 1 Quoc V. Le1 Jeff Dean 1

Abstract

We proposeEfficient Neural ArchitectureSearch

(ENAS), a fast and inexpensive approach for au-

tomatic model design. In ENAS, a controller dis-

coversneural network architecturesby searching

for an optimal subgraph within a large computa-

tional graph. The controller is trained with pol-

icy gradient to select a subgraph that maximizes

the expected reward on a validation set. Mean-

while the model corresponding to the selected

subgraph istrained to minimizeacanonical cross

entropy loss. Sharing parameters among child

models allows ENAS to deliver strong empiri-

cal performances, while using much fewer GPU-

hours than existing automatic model design ap-

proaches, and notably, 1000x lessexpensivethan

standard Neural Architecture Search. On the

Penn Treebank dataset, ENAS discovers a novel

architecture that achieves a test perplexity of

55.8, establishing a new state-of-the-art among

all methodswithout post-training processing. On

the CIFAR-10 dataset, ENAS finds a novel ar-

chitecture that achieves 2.89% test error, which

is on par with the 2.65% test error of NAS-

Net (Zoph et al., 2018).

1. Introduction

Neural architecturesearch (NAS) hasbeen successfully ap-

plied to design model architectures for image classifica-

tion and language models (Zoph & Le, 2017; Zoph et al.,

2018; Cai et al., 2018; Liu et al., 2017; 2018). In NAS, an

RNN controller is trained in a loop: the controller first

samples a candidate architecture, i.e. a child model, and

then trains it to convergence to measure its performance

on the task of desire. The controller then uses the perfor-

mance as a guiding signal to find morepromising architec-

tures. This process is repeated for many iterations. De-

* Equal contribution 1Google Brain 2Language Technology In-
stitute, CarnegieMellon University 3Department of Computer Sci-
ence, Stanford University. Correspondence to: Hieu Pham < hy-
hieu@cmu.edu> , Melody Y. Guan < mguan@stanford.edu> .

Copyright 2018 by theauthors.

spite its impressiveempirical performance, NAS iscompu-

tationally expensive and time consuming, e.g. Zoph et al.

(2018) use 450 GPUs for 3-4 days (i.e. 32,400-43,200

GPU hours). Meanwhile, using less resourcestends to pro-

duce less compelling results (Negrinho & Gordon, 2017;

Baker et al., 2017a). We observe that the computational

bottleneck of NAS is the training of each child model to

convergence, only to measure its accuracy whilst throwing

away all the trained weights.

The main contribution of this work is to improve the effi-

ciency of NASby forcing all child modelsto shareweights

to eschew training each child model from scratch to conver-

gence. The idea has apparent complications, as different

child modelsmight utilizetheir weightsdifferently, but was

encouraged by previouswork on transfer learning and mul-

titask learning, which established that parameters learned

for a particular model on a particular task can be used

for other models on other tasks, with little to no modifica-

tions(Razavian et al., 2014; Zoph et al., 2016; Luong et al.,

2016).

We empirically show that not only is sharing parame-

ters among child models possible, but it also allows for

very strong performance. Specifically, on CIFAR-10, our

method achievesa test error of 2.89%, compared to 2.65%

by NAS. On Penn Treebank, our methodachievesatest per-

plexity of 55.8, which significantly outperformsNAS’s test

perplexity of 62.4 (Zoph & Le, 2017) and which is a new

state-of-the-art among Penn Treebank’sapproachesthat do

not utilize post-training processing. Importantly, in all of

our experiments, for which we use a single Nvidia GTX

1080Ti GPU, thesearch for architecturestakes less than 16

hours. Compared to NAS, this isareduction of GPU-hours

by more than 1000x. Due to its efficiency, we name our

method Efficient Neural ArchitectureSearch (ENAS).

2. Methods

Central to the idea of ENAS is the observation that all

of the graphs which NAS ends up iterating over can be

viewed assub-graphsof a larger graph. In other words, we

can represent NAS’s search space using a single directed

acyclic graph (DAG). Figure 2 illustrates a generic exam-

ple DAG, where an architecture can be realized by taking

asubgraph of theDAG. Intuitively, ENAS’s DAG is thesu-

2018 Google Brain, CMU, Stanford

Efficient Neural ArchitectureSearch via Parameter Shar ing

Method GPUs
Times Params Error
(days) (million) (%)

DenseNet-BC (Huang et al., 2016) − − 25.6 3.46
DenseNet + Shake-Shake (Gastaldi, 2016) − − 26.2 2.86
DenseNet + CutOut (DeVries& Taylor, 2017) − − 26.2 2.56

Budgeted Super Nets (Veniat & Denoyer, 2017) − − − 9.21
ConvFabrics (Saxena& Verbeek, 2016) − − 21.2 7.43
Macro NAS + Q-Learning (Baker et al., 2017a) 10 8-10 11.2 6.92
Net Transformation (Cai et al., 2018) 5 2 19.7 5.70
FractalNet (Larsson et al., 2017) − − 38.6 4.60
SMASH (Brock et al., 2018) 1 1.5 16.0 4.03
NAS (Zoph & Le, 2017) 800 21-28 7.1 4.47
NAS + morefilters (Zoph & Le, 2017) 800 21-28 37.4 3.65

ENAS + macro search space 1 0.32 21.3 4.23
ENAS + macro search space + more channels 1 0.32 38.0 3.87

Hierarchical NAS (Liu et al., 2018) 200 1.5 61.3 3.63
Micro NAS+ Q-Learning (Zhong et al., 2018) 32 3 − 3.60
Progressive NAS(Liu et al., 2017) 100 1.5 3.2 3.63
NASNet-A (Zoph et al., 2018) 450 3-4 3.3 3.41
NASNet-A + CutOut (Zoph et al., 2018) 450 3-4 3.3 2.65

ENAS + micro search space 1 0.45 4.6 3.54
ENAS + micro search space+ CutOut 1 0.45 4.6 2.89

Table 2. Classification errors of ENAS and baselines on CIFAR-10. In this table, the first block presents DenseNet, one of the state-of-

the-art architectures designed by human experts. The second block presents approaches that design the entire network. The last block

presents techniques that design modular cellswhich are combined to build thefinal network.

Figure7. ENAS’sdiscovered network from themacro search space for image classification.

GPU-hoursby morethan 50,000x compared to NAS.

The third block of Table 2 presents the performances of

approaches that attempt to design one more more modules

and then connect them together to form the final networks.

ENAS takes 11.5 hours to discover the convolution cell

and the reduction cell, which are visualized in Figure 8.

With the convolutional cell replicated for N = 6 times

(c.f. Figure4), ENASachieves3.54%test error, on par with

the 3.41% error of NASNet-A (Zoph et al., 2018). With

CutOut (DeVries& Taylor, 2017), ENAS’serror decreases

to 2.89%, compared to 2.65% by NASNet-A.

In addition to ENAS’s strong performance, we also find

that the models found by ENAS are, in a sense, the lo-

cal minimums in their search spaces. In particular, in the

model that ENAS finds from the marco search space, if

we replace all separable convolutions with normal convo-

lutions, and then adjust the model size so that the number

of parameters stay the same, then the test error increases

by 1.7%. Similarly, if werandomly changeseveral connec-

tionsin thecells that ENASfindsin themicro search space,

the test error increases by 2.1%. This behavior is also ob-

served when ENAS searches for recurrent cells (c.f. Sec-

tion 3.1), as well as in Zoph & Le (2017). We thus believe

that the controller RNN learned by ENAS is as good as

the controller RNN learned by NAS, and that the perfor-

mance gap between NAS and ENAS is due to the fact that

we do not sample multiple architectures from our trained

controller, train them, and then select the best architecture

on the validation data. This extra step benefits NAS’s per-

formance.

Efficient Neural ArchitectureSearch via Parameter Shar ing

Figure 1. An exampleof arecurrent cell in our search spacewith 4 computational nodes. Left: Thecomputational DAG that corresponds

to therecurrent cell. The red edges represent theflow of information in the graph. Middle: The recurrent cell. Right: Theoutputs of the

controller RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so

their resultsare averaged and are treated as the cell’s output.

Figure 2. The graph represents the entire search space while the

red arrows define a model in the search space, which is decided

by a controller. Here, node 1 is the input to the model whereas

nodes 3 and 6 are the model’s outputs.

perposition of all possible child models in a search space

of NAS, where the nodes represent the local computations

and the edges represent the flow of information. The lo-

cal computations at each node have their own parameters,

which are used only when theparticular computation is ac-

tivated. Therefore, ENAS’s design allows parameters to

be shared among all child models, i.e. architectures, in the

search space.

In thefollowing, wefacilitate thediscussion of ENASwith

an example that illustrates how to design a cell for recur-

rent neural networksfrom aspecified DAG and acontroller

(Section 2.1). Wewill then explain how to train ENASand

how to derive architectures from ENAS’s controller (Sec-

tion 2.2). Finally, we will explain our search space for de-

signing convolutional architectures(Sections2.3 and 2.4).

2.1. Designing Recurrent Cells

To design recurrent cells, weemploy aDAG with N nodes,

where the nodes represent local computations, and the

edges represent the flow of information between the N

nodes. ENAS’scontroller isan RNN that decides: 1) which

edges are activated and 2) which computations are per-

formed at each nodein theDAG. Thisdesign of our search

space for RNN cells is different from the search space for

RNN cells in Zoph & Le (2017), where the authors fix the

topology of their architectures as a binary tree and only

learn the operations at each node of the tree. In contrast,

our search space allows ENAS to design both the topology

and the operations in RNN cells, and hence is more flexi-

ble.

To create a recurrent cell, the controller RNN samples N

blocks of decisions. Here we illustrate the ENAS mecha-

nism via a simple example recurrent cell with N = 4 com-

putational nodes (visualized in Figure 1). Let xt be the

input signal for a recurrent cell (e.g. word embedding), and

ht− 1 be theoutput from theprevioustimestep. Wesample

as follows.

1. At node 1: The controller first samples an activation func-
tion. In our example, thecontroller chooses the tanh activa-
tion function, which means that node 1 of the recurrent cell

should compute h1 = tanh (x t ·W ( x ) + ht − 1 ·W
( h )

1 ).

2. At node 2: The controller then samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function ReLU. Thus,

node 2 of the cell computes h2 = ReLU(h1 ·W
( h )

2,1 ).

3. At node 3: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 2 and the activation function ReLU. There-

fore, h3 = ReLU(h2 ·W
( h )

3,2 ).

4. At node 4: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function tanh, leading

to h4 = tanh (h1 ·W
( h )

4,1 ).

5. For theoutput, wesimply average all the looseends, i.e. the
nodes that are not selected as inputs to any other nodes. In
our example, since the indices 3 and 4 were never sampled
to be the input for any node, the recurrent cell uses their
average (h3 + h4)/ 2 as its output. In other words, ht =
(h3 + h4)/ 2.

In the example above, we note that for each pair of nodes

j < , there is an independent parameter matrix W
(h )

,j . As

shown in the example, by choosing the previous indices,

the controller also decides which parameter matrices are

used. Therefore, in ENAS, all recurrent cells in a search

spaceshare thesame set of parameters.

Our search space includes an exponential number of con-

figurations. Specifically, if the recurrent cell has N nodes

Efficient Neural ArchitectureSearch via Parameter Shar ing

Figure1. An exampleof arecurrent cell in our search spacewith 4 computational nodes. Left: Thecomputational DAG that corresponds

to the recurrent cell. The red edges represent theflow of information in the graph. Middle: Therecurrent cell. Right: Theoutputs of the

controller RNN that result in the cell in themiddle and the DAG on the left. Note that nodes 3 and 4 arenever sampled by theRNN, so

their resultsareaveraged and are treated as thecell’s output.

Figure2. The graph represents the entire search space while the

red arrows define a model in the search space, which is decided

by a controller. Here, node 1 is the input to the model whereas

nodes 3 and 6 are themodel’s outputs.

perposition of all possible child models in a search space

of NAS, where the nodes represent the local computations

and the edges represent the flow of information. The lo-

cal computations at each node have their own parameters,

which areused only when the particular computation is ac-

tivated. Therefore, ENAS’s design allows parameters to

be shared among all child models, i.e. architectures, in the

search space.

In thefollowing, wefacilitate thediscussion of ENASwith

an example that illustrates how to design a cell for recur-

rent neural networksfrom aspecified DAG and acontroller

(Section 2.1). We will then explain how to train ENASand

how to derive architectures from ENAS’s controller (Sec-

tion 2.2). Finally, we will explain our search space for de-

signing convolutional architectures(Sections2.3 and 2.4).

2.1. Designing Recurrent Cells

To design recurrent cells, weemploy aDAG with N nodes,

where the nodes represent local computations, and the

edges represent the flow of information between the N

nodes. ENAS’scontroller isan RNN that decides: 1) which

edges are activated and 2) which computations are per-

formed at each nodein theDAG. Thisdesign of our search

space for RNN cells is different from the search space for

RNN cells in Zoph & Le (2017), where the authors fix the

topology of their architectures as a binary tree and only

learn the operations at each node of the tree. In contrast,

our search space allows ENASto design both the topology

and the operations in RNN cells, and hence is more flexi-

ble.

To create a recurrent cell, the controller RNN samples N

blocks of decisions. Here we illustrate the ENAS mecha-

nism via asimple example recurrent cell with N = 4 com-

putational nodes (visualized in Figure 1). Let xt be the

input signal for a recurrent cell (e.g. word embedding), and

ht− 1 betheoutput from theprevioustimestep. Wesample

as follows.

1. At node 1: The controller first samples an activation func-
tion. In our example, thecontroller chooses the tanh activa-
tion function, which means that node 1 of the recurrent cell

should compute h1 = tanh (x t ·W ( x ) + ht − 1 ·W
( h )

1 ).

2. At node 2: The controller then samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function ReLU. Thus,

node 2 of the cell computes h2 = ReLU(h1 ·W
( h )

2,1 ).

3. At node 3: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 2 and the activation function ReLU. There-

fore, h3 = ReLU(h2 ·W
( h )

3,2 ).

4. At node 4: The controller again samples a previous index
and an activation function. In our example, it chooses the
previous index 1 and the activation function tanh, leading

to h4 = tanh (h1 ·W
( h )

4,1 ).

5. For theoutput, wesimply averageall the looseends, i.e. the
nodes that are not selected as inputs to any other nodes. In
our example, since the indices 3 and 4 were never sampled
to be the input for any node, the recurrent cell uses their
average (h3 + h4)/ 2 as its output. In other words, ht =
(h3 + h4)/ 2.

In the example above, we note that for each pair of nodes

j < , there is an independent parameter matrix W
(h )

,j . As

shown in the example, by choosing the previous indices,

the controller also decides which parameter matrices are

used. Therefore, in ENAS, all recurrent cells in a search

spaceshare thesame set of parameters.

Our search space includes an exponential number of con-

figurations. Specifically, if the recurrent cell has N nodes
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o Eventually AutoML and NAS may make model selection 

obsolete

o Many models in the model zoo

o Model architectures are task specific

o Encode what you know, learn the rest

o Use pretrained models when you can

o Use transfer learning when you can

o AI changes very quickly. Use Arxiv sanity to keep up.

SUMMARY

dhall@nvidia.com


