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General framework, inference vs prediction

Useful reference books:

• free and well-written
• worked-out code examples
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General framework, inference vs prediction

Some definitions for starters

Statistical learning: large set of tools to gain insights from data

Supervised versus unsupervised:

• supervised: output and one or more inputs
• classification
• regression
• . . .

• unsupervised: only inputs, the structure of these inputs is of interest
• clustering
• association analysis
• dimension reduction, e.g. principal components analysis
• . . .

⇒ We will focus on the supervised setting.
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General framework, inference vs prediction

Basic model formulation

The supervised model in its simplest form:

Y = f (X ) + ε

Model components:
Y : some variable we are interested in, output
f : some fixed but unknown function of X
X : variables X1, . . . ,Xp we believe might have a relationship to Y, inputs
ε : random error term

Main goal:
estimate f
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General framework, inference vs prediction

Regression versus classification

The supervised model in its simplest form:

Y = f (X ) + ε

Supervised scenarios can be further categorized as regression versus
classification problems:

• if the output Y is a quantitative variable ⇒ regression

• if the output Y is a qualitative (categorical) variable ⇒ classification

The categorization does not depend on the input variables, which can be
either quantitative or qualitative. There is also a grey area, e.g. in the case
of logistic or multinomial regression, where the outputs are categorical.
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General framework, inference vs prediction

Why do want to estimate f ?

Two main reasons:

• Prediction: if we get a new set X , what will Y be.

• Inference: what is the relationship between X and Y

⇒ Our motivation influences the approaches we choose to model f !

Trade-off between prediction accuracy and model interpretability:

A simpler, less flexible, model is generally easier to interpret, but might
not be as accurate as a more flexible model.
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General framework, inference vs prediction

Prediction

The prediction equation in its simplest form:

Ŷ = f̂ (X )

Meaning of terms:
Ŷ : prediction of Y
f̂ : estimate of f
X : input variables X1, . . . ,Xp

If prediction is our only goal, than f̂ can be treated as a black box,
meaning we are not concerned with the exact form of f̂ and how the Xs
are related to the Ys. What we care about are accurate predictions.
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General framework, inference vs prediction

Prediction Accuracy

How close is our estimated Ŷ to the true Y ?

Usually expressed as the squared difference between predicted and true
value of Y , which depends on two error components.

Decomposition in reducible and irreducible error:

E (Y − Ŷ )2 = E [f (X ) + ε− f̂ (X )]2

= [f (X )− f̂ (X )]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible
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General framework, inference vs prediction

Illustration of irreducible error
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Figure credit: Introduction to Statistical Learning, Figure 2.2
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General framework, inference vs prediction

Prediction Accuracy cont.

Decomposition in reducible and irreducible error:

E (Y − Ŷ )2 = E [f (X ) + ε− f̂ (X )]2

= [f (X )− f̂ (X )]2︸ ︷︷ ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible

Focus of statistical learning is on minimizing the reducible error. By
definition, this can not be done for the irreducible error, which provides a
bound for the prediction accuracy, which is unfortunately almost always
unknown in practice.

Why is there irreducible error?

• variables that might be useful in predicting Y are not measured or
part of X

• there is inherent variability in the system modeled
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General framework, inference vs prediction

Inference

We want to understand the relationship between X and Y , specifically
how Y changes as a function of X1, . . . ,Xp.

In this case we can NOT treat f̂ as a black box, but are interested in its
exact form.

Typical questions that arise in the inference context:

• Which of the predictors are related to the response? ⇒ Variable
selection.

• What is the nature of the relationship between the predictors and the
response? ⇒ Model selection.

There are scenarios where we are interested in both prediction and
inference.
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General framework, inference vs prediction

Question Break 1

Time for questions!
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Forms for f , cross-validation and model selection
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Forms for f , cross-validation and model selection

How do we estimate f ?

Reminder of the model in its simplest form:

Y = f (X ) + ε

Goal in estimating f̂ :

Find a function f̂ such that Y ≈ f̂ (X ) for all (X,Y).

While details depend on the specific methods, there are some common
characteristics we can discuss. In doing so, it helps to classify a method as
either parametric, i.e. assuming a functional form, or non-parametric.
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Forms for f , cross-validation and model selection

Parametric methods

Parametric modeling involves a two-step approach:

1. Assumption about the functional form. As simple example is a linear
model:

f (X ) = β0 + β1 ∗ X1 + β2 ∗ X2 + . . .+ βp ∗ Xp

The problem of estimating f is now reduced to estimating the
parameters β0, β1, β2, . . . , βp.

2. Actual estimation of the parameters using training data to fit or train
the model. Depending on the functional form and number of
parameters, this step can be numerically challenging. In simple cases,
e.g. linear models, there are explicit solutions such as least squares.
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Forms for f , cross-validation and model selection

Non-parametric methods

Non-parametric methods do not make explicit assumptions about the
functional form of f . Rather they target an estimate of f that is close to
the data while conforming to smoothness constraints.

Highlights:

• The main advantage of non-parametric methods is that they do not
impose a specific functional form, which might be far from the true f .

• Their main disadvantage is that the number of observations required is
large, as they do not reduce the problem of estimating f to a small number
of parameters. They are also not very informative in inferential settings.

• The parameter that balances the fit to the data with the smoothness
constraint needs to be determined.

Hammerling (CSM) ML/SL Fundamentals June 22, 2020 18 / 42



Forms for f , cross-validation and model selection

Non-parametric methods

Non-parametric methods do not make explicit assumptions about the
functional form of f . Rather they target an estimate of f that is close to
the data while conforming to smoothness constraints.

Highlights:

• The main advantage of non-parametric methods is that they do not
impose a specific functional form, which might be far from the true f .

• Their main disadvantage is that the number of observations required is
large, as they do not reduce the problem of estimating f to a small number
of parameters. They are also not very informative in inferential settings.

• The parameter that balances the fit to the data with the smoothness
constraint needs to be determined.

Hammerling (CSM) ML/SL Fundamentals June 22, 2020 18 / 42



Forms for f , cross-validation and model selection

Non-parametric methods

Non-parametric methods do not make explicit assumptions about the
functional form of f . Rather they target an estimate of f that is close to
the data while conforming to smoothness constraints.

Highlights:

• The main advantage of non-parametric methods is that they do not
impose a specific functional form, which might be far from the true f .

• Their main disadvantage is that the number of observations required is
large, as they do not reduce the problem of estimating f to a small number
of parameters. They are also not very informative in inferential settings.

• The parameter that balances the fit to the data with the smoothness
constraint needs to be determined.

Hammerling (CSM) ML/SL Fundamentals June 22, 2020 18 / 42



Forms for f , cross-validation and model selection

Illustration of a parametric (linear) model:
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Figure credit: Introduction to Statistical Learning, Figures 2.3 and 2.4
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Forms for f , cross-validation and model selection

Illustration of a non-parametric model (thin-plate spline):
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Figure credit: Introduction to Statistical Learning, Figures 2.3 and 2.5
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Forms for f , cross-validation and model selection

Comparison of different smoothness assumptions:
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Figure credit: Introduction to Statistical Learning, Figures 2.5 and 2.6
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Forms for f , cross-validation and model selection

How do we go about estimating tuning parameters?

Cross-validation is often the answers!

The main idea of cross-validation is to split the data into training data and
test data. As the names imply, we use the training data to train our model
and the test data to evaluate its performance on new data.

We don’t want to use the training data exclusively to evaluate our model
as such an approach would automatically favor more flexible models.

One can think of a reasonable fit to the training data as a necessary but
not sufficient condition, while the performance on new data is the litmus
test.

Cross-validation is very versatile and can be used in a wide variety of
settings to evaluate models or find parameters!
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Forms for f , cross-validation and model selection

Illustration of training versus test error
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Figure credit: Introduction to Statistical Learning, Figure 2.9
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Forms for f , cross-validation and model selection

The main flavors of cross-validation:

• Leave-one-out cross-validation (LOOCV): A single observation comprises
the validation set and the remainder of the data is used for training.

CV(n) =
1

n

n∑
i=1

MSEi

Can be computationally expensive if model fitting is expensive.

• k-fold cross-validation: data is randomly divided into k-groups, or folds.
The first group is treated as validation data, the remaining groups as
training data. This is repeated k times switching the validation sets.

CV(k) =
1

k

k∑
i=1

MSEi

LOOCV is a special case of k-fold cross-validation with k = n.
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Forms for f , cross-validation and model selection

Illustration of cross-validation
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Figure credit: Introduction to Statistical Learning, Figure 5.4
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Forms for f , cross-validation and model selection

Question Break 2

Time for questions!
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Practical application combining concepts
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Practical application combining concepts

Motivation for study

Big picture: We are using natural variability in the climate to model
atmospheric carbon monoxide (CO) concentrations.

Motivation: Why bother modeling CO?

1. Fires are the primary source
of CO in the Southern
Hemisphere.

2. CO can be used as a proxy
for fires.

3. Predictive CO models can
help countries prepare for
large burn events.

2015 Indonesia Fires

terra.nasa.gov/areas/mopittHammerling (CSM) ML/SL Fundamentals June 22, 2020 28 / 42



Practical application combining concepts

Response Variable

• CO measurements from MOPITT instrument on board the Terra satellite.

• CO is aggregated into seven biomass burning regions.

• A separate model is created for each region.Journal of Geophysical Research: Atmospheres 10.1029/2018JD028438

Figure 1. Boxes in (a) define the regions of interest and are overplotted on a map of average September to December
total column CO from Measurements of Pollution in The Troposphere V7-thermal infrared between 2001 and 2016. Note
that we select only retrievals over land within these boundaries. MSEA = Maritime SEA; NAus = North Australasia;
SAus = South Australasia; CSAf = Central Southern Africa; SSAf = South Southern Africa; CSAm = Central South America;
SSAm = Southern South America. The base plot in (b) is standard deviation of total column CO that corresponds to (a),
overplotted in red boxes that define regions of the sea surface temperature climate indices, TSA, DMI, and Niño3.4.
White arrows schematically depict the displacement of westerly winds associated with the atmospherically defined
climate index, SAM. Climate indices are described in section 2.2. TSA = Tropical South Atlantic; DMI = Dipole Mode
Index; SAM = Southern Annular Mode.

are described in Deeter et al. (2017). MOPITT products are publicly available through several repositories
linked via http://terra.nasa.gov/about/terra-instruments/mopitt or https://www2.acom.ucar.edu/mopitt.

The stable systematic bias found for the MOPITT total column product makes it well suited for analyzing
long time series (Deeter et al., 2017). In order to reduce systematic and random error, we select daytime,
land-only retrievals from the thermal infrared (TIR) product (MOPITT Science Team, 2013). Daytime retrievals
have higher sensitivity to CO due to higher thermal contrast compared with nighttime retrievals (Deeter et al.,
2007). Restricting analysis to land-only scenes minimizes the effect of different retrieval sensitivity between
land and water scenes. The TIR product has lower random error compared to the near-infrared or multispec-
tral products (Deeter et al., 2014) and similar sensitivity as the multispectral product to total column CO from
large-scale fires. Averaging over large areas and month time scales further reduces random error to negligi-
ble amounts. We find that spatial averages over large areas, such as the regions chosen in this study, produce
equivalent CO timeseries and anomalies for TIR and multispectral products (not shown). Therefore, while we
only analyze the TIR product, results will translate to the multispectral product.

For each region of interest, a spatial and climatological average of monthly total column CO between 2001
and 2016 is determined and subtracted from monthly average values to produce a time series of monthly CO
anomalies. The anomaly data sets developed and used in this study are publicly available through the National
Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/datasets/ds682.0, doi:
10.5065/D61N7ZX4).
2.1.1. Selected Regions
We investigate IAV in CO for four main biomass burning regions in the tropics and Southern Hemisphere:
Maritime SEA (10–10∘N, 90–160∘E), Australasia (50–10∘S, 110–180∘E), southern Africa (40–10∘S, 0–60∘E)
and South America (60–5∘S, 80–32∘W; Figure 1). The latter three regions required splitting into subregions in
order to account for different CO variability patterns within each subregion. In general, we split these regions
into tropical and temperate regions at 25∘S. While the tropical regions tend to have more biomass burning
than the temperate ones, temperate regions are more populated and air quality has a greater potential for
impacts on human health.

Australasia is split into two regions, approximately into tropical (North Australasia: 25–10∘S, 110–180∘E) and
temperate (South Australasia: 50–25∘S, 110–180∘E) subregions. The frequency of large fires is substantially
higher in the tropical subregion compared to the temperate subregion (Russell-Smith et al., 2007), and peak
fire seasons differ between the subregions (Langmann et al., 2009; Russell-Smith et al., 2007). Additionally,
the majority of agricultural activities are found below 25∘S (Bryan et al., 2016) as well as more than 85%
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Figure: Regions of interest plotted over average total column CO.
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Practical application combining concepts

Response Variable

Response variable: De-seasonalized CO anomaly at a given time, t.
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Practical application combining concepts

Predictor Variables

• Burn events are related
to climate through
availability and dryness
of fuel.

• Climate indices are
metrics that summarize
aperiodic changes in
climate.

Predictor variables: Climate indices, lagged at time t-τ .
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Practical application combining concepts

Statistical Model

We use a lagged multiple linear regression model with first order
interaction terms to explain the relationship between atmospheric CO and
the climate indices.

CO(t) = µ+
∑
k

ak · χk(t - τk) +
∑
i ,j

bij · χi (t - τi ) · χj(t - τj)

• CO(t) is the CO anomaly in a given response region at time t

• µ is a constant mean displacement

• ak and bij are coefficients

• χ are the climate indices

• τ is the lag value for each index

• k, i , and j iterate over the number of indices used in the analysisHammerling (CSM) ML/SL Fundamentals June 22, 2020 32 / 42



Practical application combining concepts

Variability in Climate Indices

• Some climate indices are smoother than others.
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Practical application combining concepts

Variability in Climate Indices

• Difference between NINO and AAO is very apparent.
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Practical application combining concepts

Variability in Climate Indices

• Lots of variability makes choice of lag values important.

• Potentially large differences from one week to the next.

• Circled points are close in time but have very different values.

Are features like this noise or signal?
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Practical application combining concepts

Smoothing Climate Indices

Smoothing climate indices can protect against these noisy jumps.

Smoothing kernel:

• Move an averaging “window” across the data.

• Apply weights to the average so that the current data point has the most
influence.

Gaussian kernel:

K (t) =
1√
2π

exp (−t2/2),

where the parameter t controls the size of the smoothing “window”

⇒ The window size is typically selected with cross-validation.
Hammerling (CSM) ML/SL Fundamentals June 22, 2020 36 / 42



Practical application combining concepts

Smoothing Climate Indices

• Gaussian kernel:
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Practical application combining concepts

Smoothing Climate Indices

Smoothing climate indices can protect against these noisy jumps.

Smoothing splines:

• Optimize a loss function of the “Loss + Penalty” form.

• Loss term encourages smoothing spline to fit data well.

• Penalty term prevents smoothing spline from overfitting.

Find the function f that minimizes

n∑
i=1

(yi − f (xi ))2 + λ

∫
f ′′(t)2dt

where the tuning parameter λ balances the loss and penalty terms.

⇒ The tuning parameter is typically selected with cross-validation.
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Practical application combining concepts

Smoothing Climate Indices

• Smoothing splines:
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Practical application combining concepts

Smoothing Climate Indices

• Smoothing reduces noise, but potentially eliminates signal as well.
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Practical application combining concepts

Model Performance

In this case, smoothing actually increases test RMSE! Perhaps the variability is signal
after all...
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Practical application combining concepts

Final time for Questions

Time for questions!
Thanks!
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