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What is Segmentation?
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Segmentation of Atmospheric Phenomenon
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Why

Identification, Classification, and Tracking

● Early warning

● Verification for specific atmospheric schemes

Automation of processes

Analytics 

● Counting and comparing numbers or size of features

Targeted Data Extraction

● Identify features for further analysis
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Creation of Labels

Hand Drawn

● Expert derived - Subjective

● Manually Intensive

Heuristics 

● Rule based - Objective

● Can be fast

● May miss some features

● May include erroneous features

Crowdsourcing
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Cat or Croissant?
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Discussion on Labeling

How precise do you need to be?

● Exact - pixel for pixel for feature

● Bounding box - general area of feature

● Disagreements between experts

If I have heuristics, why do I need Machine Learning?

● Heuristics often derived from other data sources not from target 

dataset

● Inference is fast, depending on algorithm, can be significantly faster
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What does a label look like?
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Integer Encoding Method:

0 = background

1 = Tropical Cyclone

2 = Cloud

N = Number of Classes

LABELS = (X, Y, 1) 
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What does a label look like?
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Integer Encoding Method:

0 = background

1 = Tropical Cyclone

2 = Cloud

N = Number of Classes

LABELS = (X, Y, 1) 

Problem: Model can interpret values order is meaningful and higher values could be interpreted 

as higher importance
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One Hot Encoding
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0 = background

1 = Tropical Cyclone

2 = Cloud
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Cyclone

Splits integer array into an array for each class.

Many tools exists to perform this conversion. 

N = Number of Classes

Label = (X, Y, N)
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Dataset Challenges
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Water Vapor Image
Water Vapor Image with 

Tropical Cyclone Labels
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Dataset Imbalance

= 95% Accuracy
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Truth (White are Labeled Cyclones) Prediction from Model
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Working with Dataset Imbalances

Image Processing

Sampling Techniques

● Undersample majority class

● Oversample minority class

Modify Labels
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Different Loss Functions

Source: https://github.com/JunMa11/SegLoss

https://github.com/JunMa11/SegLoss
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Image Processing

Sliding Window Technique

Training dataset can now contain more 
equitable distribution of both positive and 
negative segmentation

Potential Downsides:
● More processing
● Not efficient
● Convolutional Layers are doing this 

internally
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Sliding 
window
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Loss Function - Dice Coefficient

2∗|X∩Y| 

|X|+|Y|

Truth (X)

Prediction (Y)

Dice Coefficient =

False Negative

False Positive

True Positive

DC = 1.0 Identical Image

DC = 0.0 No overlap
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Dice Coefficient in Code

# using keras

def dice_coeff(y_true, y_pred): 
smooth = 1. 
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred) 
intersection = K.sum(y_true_f * y_pred_f) 
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) 
return score 

def dice_loss(y_true, y_pred):
return (1 - dice_coeff(y_true, y_pred))

# smooth variable helps optimizer and avoids division by zero
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Loss Function - Tversky Coefficient

2∗|X∩Y| 

(|X∩Y| + 𝝰|X-Y|+𝛃|Y-X|)Tversky Coefficient =

False Negative

𝝰 < 𝛃 penalizes false negatives more

def tversky_coeff(alpha=0.3, beta=0.7, smooth=1e-10):

def tversky(y_true, y_pred):
y_true = K.flatten(y_true)
y_pred = K.flatten(y_pred)
truepos = K.sum(y_true * y_pred)
fp_and_fn = alpha * K.sum(y_pred * (1 - y_true)) 

+ beta * K.sum((1 - y_pred) * y_true)
return (truepos + smooth) / ((truepos + smooth) 

+ fp_and_fn)
return tversky
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Neural Network Structures - U-Net

• Links small features before compression 
with larger features after compression

• Commonly seen in image segmentation 
challenges on Kaggle.com
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def conv2d_block(input_tensor, n_filters=64, kernel_size=3, layers=2, batchnorm=True):
X = input_tensor

for l in range(0,layers):
x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer="he_normal",  

padding="same")(x)
if batchnorm:

x = BatchNormalization()(x)
x = Activation("relu")(x)

return x
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U-Net in Code

Single Channel Input
INPUT = (BATCH_SIZE, 572, 572, 1)

If you had RBG (ie 3 Channels)
INPUT = (BATCH_SIZE, 572, 572, 3)
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# contracting path
# Block 1
c1 = conv2d_block(input_img, n_filters=n_filters*1, kernel_size=3, layers=2, 

batchnorm=batchnorm)
p1 = MaxPooling2D((2, 2)) (c1)
p1 = Dropout(dropout*0.5)(p1)

# Block 2
c2 = conv2d_block(p1, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
p2 = MaxPooling2D((2, 2)) (c2)
p2 = Dropout(dropout)(p2)

# For the depth of U-Net, repeat for each block c3, c4
# increasing multiplier on n_filters by factor of 2 each block

c5 = conv2d_block(p4, n_filters=n_filters*16, kernel_size=3, batchnorm=batchnorm)
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U-Net in Code
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# expansive path
u6 = Conv2DTranspose(n_filters*8, (3, 3), strides=(2, 2), padding='same') (c5)
u6 = concatenate([u6, c4])
u6 = Dropout(dropout)(u6)
c6 = conv2d_block(u6, n_filters=n_filters*8, kernel_size=3, layers=2, batchnorm=batchnorm)

u7 = Conv2DTranspose(n_filters*4, (3, 3), strides=(2, 2), padding='same') (c6)
u7 = concatenate([u7, c3])
u7 = Dropout(dropout)(u7)
c7 = conv2d_block(u7, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)

# For the depth of U-Net, repeat for each block c8, c9
# decreasing multiplier on n_filters by factor of 2 each block

## 
outputs = Conv2D(output_channels, (1, 1), activation='sigmoid') (c9)
model = Model(inputs=inputs, outputs=outputs)
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U-Net in Code



NOAA - Earth System Research Laboratories

Discussion on Neural Nets for Segmentation

Things to try:

● Use Gaussian Noise versus Dropout

● Vary Number of Filters (n_filters) value

● Keep consistent Number of Filters (n_filters) between blocks

● Vary Depth of U-Net

● Vary final Activation

Things to consider:

● Depth and Number of Filters impact memory usage

● U-Net one of many deep neural networks for image segmentation
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U-Net in Action - Tropical Cyclones

● Water Vapor Channel from GOES Imager (Previous 
Generation)

● Storm centers from IBTracks Dataset
● Data for 2008 through 2016 
● Image segmentation 25x25 pixel box 

segmentation centered on storm
● Only used storms classified as Tropical Storm or 

greater on Saffir Simpson Scale
○ 34 knots and above

~ 10,000 Labeled Data

Input

Labeled Data
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Manual Labels

Automatic Labels from 

Trained Neural Network
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http://drive.google.com/file/d/1SC-hDRKC1hxpbuusbrIhTTWc2c4Ma05D/view
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Goal - Neural Network for 

Automatic Detection and 

Labeling of Convection 

Initiation Areas
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How Data is Used - 90 Minute Lead Time

T - 110, T - 100, T - 90 (minutes)

Band 9, Band 15

T

Binary (yes/no)

Composite Reflectivity > 35 DBz

T = Time for Prediction

Neural Network:

6 Inputs (Satellite Only)

1 output (Binary Mask where DBz > 35)

T

Composite Reflectivity
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Truth Prediction from T-30
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Prediction from T-30
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Truth Prediction from T-90

Prediction from T-90
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Summary

Understand the problem you are trying to solve first

● The tools you need vary on the solution you are looking for

● Many different tools in the toolbox

Labeled data can be challenging

● Not always an agreement - our objects can have fuzzy 

Dataset Imbalance can skew results

● Be aware and evaluate random samples

Field is still rapidly evolving

● Exciting and it can be difficult to keep up
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Thanks!

Questions?

Jebb.Q.Stewart@noaa.gov
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Resources and References

Learning:

https://www.tensorflow.org/tutorials/images/segmentation

https://towardsdatascience.com/fastai-image-segmentation-eacad8543f6f

https://medium.com/analytics-vidhya/pytorch-implementation-of-semantic-segmentation-for-single-class-from-scratch-81f96643c98c

https://www.jeremyjordan.me/semantic-segmentation/

Data:

https://www.ncdc.noaa.gov/ibtracs/

https://www.bou.class.noaa.gov/saa/products/search?datatype_family=GVAR_IMG

Papers:

U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger, O. (2015)

https://arxiv.org/pdf/1505.04597.pdf

Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey,Sultana et al (2020),

https://arxiv.org/abs/2001.04074
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