
Artificial Intelligence for Earth System 

Science Summer School



Acknowledgements

Organizing Committee

• Taysia Peterson

• David John Gagne

• Karthik Kashinath

• Rich Loft

Sponsors

• UCAR President’s Council

• Vaisala: Eric Grimit

• Amazon Web Services: Zac Flamig

• NCAR Machine Learning Data 
Commons Reinvestment Project 

Hackathon Development Team

• Charlie Becker

• Gabrielle Gantos

• Keely Lawrence

• Gunther Wallach

• Ankur Mahesh

• Bill Petzke

• Aaron Bansemer

• Matt Hayman

• Siyuan Wang

• Alma Hodzic

• Andrew Gettelman

• Chih-Chieh (Jack) Chen

Livestream and Slido Team

• Paul Martinez

• Kelvin Tavarez

• Mary Andreski

• Lisa Larson

• Gail Rutledge



Speaker Acknowledgements

Monday

9:10: David John Gagne

10:20: Dorit Hammerling

11:30: Ryan Lagerquist

Tuesday

9:00: Karthik Kashinath

10:10: Chaopeng Shen

11:20: David Hall

Wednesday

9:00: Sue Ellen Haupt

10:10: Jebb Stewart

11:20: Katie Dagon

Thursday

9:00: Amy McGovern

10:10: Imme Ebert-Uphoff

11:20: Mike Pritchard

Friday

9:00: Mustafa Mustafa

10:10: Pierre Gentine

11:20: Claire Monteleoni



Building a Strong Foundation: Defining ML 

Problems and Preprocessing

June 22, 2020

David John Gagne
Machine Learning Scientist

National Center for Atmospheric Research



Motivation

• Interest in AI and machine learning in the atmospheric sciences has 
exploded in the past three years

• Much of the attention has been focused on the algorithms
• However, choosing the right ML algorithm is not sufficient for creating 

a successful AI/ML system
• 80% of every machine learning project is spent on defining the ML 

problem and pre-processing the data
• This lecture will discuss the many important choices that must be 

made before training any ML models



Data Science

Field focused on methods for 

extracting knowledge and insights 

primarily from data

The Data Science Taxonomy

Artificial Intelligence

Methods for computer systems to 

perform human tasks

Expert Systems

Operate autonomously with 

human-specified rules. (e.g. 

fuzzy logic)

Machine Learning

Mathematical models with specified structure learn to 

perform tasks from data

Deep Learning

Neural networks with multiple 

specialized layers for encoding 

structural information



The Machine Learning Pipeline

Gather Data

Define the 

Problem

Exploratory Data 

Analysis

Data Preparation Model Selection

Model Training Model Evaluation

Model 

Interpretation

Deployment 

to Operations



Should I choose machine learning?

When ML works well

• Moderate to high coverage of 
possible space of inputs

• At least some plausible 
connection between inputs and 
outputs

• Non-ML approaches are too 
expensive or error-prone

When ML works poorly

• Limited data coverage of possible 
inputs

• Little connection between inputs 
and outputs

• Current approaches to solving 
the problem are already effective



Defining the Problem

• The most important part of any machine learning project is 
defining the problem properly

• Questions to ask:
1. What are the ultimate goals of this project?

2. What are the specific inputs and outputs needed to achieve the 
goals?

3. What data are available for the inputs and outputs? What are the data 
limitations?

4. What are the problem constraints (time, space, latency, physical)?

5. How is the problem currently solved, and what are the limitations of 
those methods?



Machine Learning Problem Examples

Object Segmentation (Kurth et al. 2018) Parameterization Emulation (Rasp et al. 2018)

Observation Diagnosis (Wimmers et al. 2019) Model Post-Processing 

(Herman and Schumacher 2018)

What is the required level of detail?

Is hand-labeling needed?

What is the current way to define 

and find objects?

How expensive is the original 

parameterization?

Do I have all the necessary inputs and 

outputs?

How will I put the emulator back in the 

numerical model?

What is the quality of my output data?

How do I quantify uncertainty?

What is the coverage of my dataset?

What is the quality of my ground truth?

Are all the relevant inputs archived?

Has the input numerical model changed 

configuration significantly?



Data Gathering

Choose your data gathering adventure

Use Existing Data Gather Your Own Data Generate Synthetic Data

Benefits Long archive

Freely available

Retrieve necessary subsets

Can compare different versions

Gather exactly what you 

need

Control experiment 

design

Control properties of data

Repeatable

Perils File formats

Lack of metadata/ provenance

Inappropriate variables or pre-

processing for problem

Biased sampling

Expensive

Quality of data gathering

No access to past

Your responsibility to 

avoid bad data sampling 

and processing practices

May be computationally 

expensive

Not from real world

Setting up infrastructure is 

time-consuming



Bias in Data

• Observational data are not 
collected randomly

• Data may be biased by the 
collection process, especially 
with report datasets

• ML models trained on biased 
data and biased assumptions 
will propagate that bias into 
their predictions

• Diverse datasets should be 
gathered for both training and 
validation

Allen and Tippett 2015



Data File Formats

• Pick data file formats based on the following criteria

– Structure of the data

– Size of the dataset

– Needs of the users

• Your raw data will likely not be in an ideal format for machine 
learning

– Legacy file format

– Chunked or strided with a less than ideal memory access 
pattern

– Missing or inconsistent variable names, formatting, etc.

• Key decision point: text vs binary

– Text: easier to inspect, more portable, but is bulky and 
prone to manual mis-formatting

– Binary: can store large datasets in a consistent format 
compactly, but requires special libraries to read 

From xkcd



Tabular and Structured Data Formats

• CSV: plaintext files containing data separated by columns. 
Very portable and readable but is row-oriented and doesn’t 
scale well for multi-GB or TB datasets

• Apache Parquet: binary open source columnar data format that 
offers compression and support for different data formats

• XML, JSON, and YAML: hierarchical text-based data formats 
with decreasing amounts of extra syntax around data. Useful 
for config files and storing non-tabular data



Geospatial Data Formats

• GRIB: World Meteorological Organization standard format for 
gridded data. Can be highly compressed, but metadata is 
stored outside files, which is a problem for custom variables

• netCDF4/HDF5: hierarchical, self-describing, binary data 
format that supports compression of individual variables. 
Works well on supercomputers but performs poorly in the 
cloud

• Zarr: new binary hierarchical data format that breaks dataset 
into a large number of small binary files. Better suited for cloud 
data storage



Data Preparation: Transformations

Time Lat Lon Temp Precip

0 35 -124 28 0

1 32 -94 15 24

2 45 -53 -2 5

… … … … …

Reshaping and Sampling

Data Scaling and Standardization Dimensionality Reduction

From xarray.pydata.org



Reshaping

• Gridded ESS data products are arranged in time-> variable-
>grid cell order for traditional data analysis purposes

• ML models generally require a vector or tensor of multiple 
variables at one location and time

• If all variables in same file, xarray.Dataset.to_dataframe
function will automatically convert gridded data to tabular form

• Sampling 2D patches requires custom code

Time Lat Lon Temp Precip

0 35 -124 28 0

1 32 -94 15 24

2 45 -53 -2 5

… … … … …



Data Transform and Scaling

• Different input variables often have different ranges 
and distributions

• In regression and neural network models, weights 
are initialized in the same range, so inputs and 
outputs with larger ranges may have more influence

• Rescaling data ensures that all variables get similar 
consideration initially

– Subtracting the mean and dividing by the 
standard deviation

– Rescaling values from 0 to 1 with minimum 
and maximum

• Log or Box-Cox transform can make exponentially 
distributed values more Gaussian

• Scaling statistics should be calculated only on 
training data to prevent information leakage



Dimensionality Reduction

• Why reduce dimensionality?
– Data contains more input variables than 

examples

– Data has high frequency modes that are 
less relevant to the problem

– Want to visualize in 2D space

• Dimensionality Reduction Methods
– Principal Component Analysis

– Fourier or Wavelet Transforms

– t-distributed Stochastic Neighbor 
Embedding

– Autoencoders



Object Identification and Tracking

• Some Earth system 
phenomena can be identified 
and tracked as discrete events

• Heuristic object identification 
systems use fixed thresholds 
and computer vision techniques

• Tracking can be accomplished 
by matching objects in time 
with centroid or overlap 
calculations

• Lots of edge cases and 
parameter tradeoffs to makeFrom Ryan Lagerquist



Feature Selection

• How to find the right balance between 
minimizing the number of inputs and 
maximizing performance?

• Global feature selection methods, like 
sequential forward selection

• Model-based feature selection, like 
LASSO

• Conditional feature selection, like 
decision trees

From McGovern et al. 2020



Training/Validation/Test Sets

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics

• Goal: produce a ML model that will generalize, or perform 

well operationally. 

• How do we estimate generalization ability?

• Training Set

• Used to optimize a model’s weights or structure for 

one set of hyperparameters

• More complex models will almost always improve on 

training set scores

• Validation Set

• Used to assess the performance of one or more 

models

• Can be used to choose hyperparameters

• Should be independent of training data unless cross-

validation is used

• Test Set

• Data unseen during training and validation

• Should be used for final assessment and not model 

selection

• How to split the data

• If data points are independent, random splits are fine

• Splitting process should account for spatial and 

temporal dependencies

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks#diagnostics


Summary

• Defining your ML problem well at the beginning will save you a 
lot of time later in the process

• Data gathering procedures can strongly impact the resulting 
ML model structure and predictions

• Pre-processing choices are key for efficiently transforming 
your data into a format suitable for machine learning


