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Part I: 
Weather Forecasting History and Philosophy



Red at Night –

Sailor’s Delight

Photo Credit: Bonny Haupt Turayev



Red in the Morning –

Sailors Take Warning!
Photo Credit: Bonny Haupt Turayev

He replied, “when evening comes, you say, ‘It will be fair weather for the sky is red,’ 
and in the morning, ‘Today it will be stormy, for the sky is red and overcast.’”

Matthew 16: 1-2 (NIV)



In Broad Sense, 
AI was Always Part of Atmospheric Science

• Norwegian Cyclone Model 
(V. Bjerknes and J. Bjerknes)

• Explains passage of standard 
weather systems

• Helped in forecasting based on 
recent events
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Observation and Classification



Computing Led to Dichotomy
Mathematics –

Reductionist approach
If discretize, predict time rate of 
change 

->  Numerical Forecasting

Richardson ’s Dream
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The Rise of 
Modern Computing

Leads to NWP 
for Prediction

http://www.library.upenn.edu/special/gallery/mauchly/jwm0 -1.html

The ENIAC machine occupied a 
room thirty by fifty feet. 
1946

Charney used filtered equations to 
produce first numerical forecast



Lorenz and Recognition 
of Chaos

• Sensitivity to initial conditions
• Chaos – limits to predictability
• Think in terms of attractors & 

manifolds
• Requires 

– assimilation
– initialization
– statistical forecasting
– ensemble forecasts
– empirical models
– Value of postprocessing

AI



Two distinct approaches to weather forecasting

1. Equation based – numerical integration and pre - and post -
processing

2. Empirically based – begin with data and find patterns  

Artificial Intelligence

Blend approaches for optimal prediction



Observations, Models, & Artificial Intelligence
• New methods emerged to 

use observed data to make 
sense of environmental 
observations – IoT

• Gridded Model Output
• Combine with increases in 

computer power
• Artificial intelligence / 

Machine Learning  methods 
both leverage and offer an 
alternative to traditional 
methods – Big Data
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Part II: 
AI/ML in Weather Forecasting



NCAR’s First Big AI Success: DICast®
Dynamic
Integrated
foreCast
System

DICast® In a Nutshell
• Machine-Learning Post-processer of model data

▪ Create predictive relationships between model output, 
observations and desired forecast variables

• Optimal Forecast Combiner
▪ Create best combination of inputs

• Enables Decision Support
• Uses Real-Time Data – IoT
• Uses Large amounts of 

Model Data
 Real time
 Historical for training



• Originally developed for The Weather Channel (now The Weather 
Company - part of IBM) to produce public-oriented forecasts

• Development started in 1999 in Research Applications Program
• Used in many other projects as the ‘weather engine’

▪ Transportation (MDSS, Pikalert®, DIA, MSP)
▪ Solar Energy (DOE, Kuwait)
▪ Wind Energy (Xcel Energy, Kuwait)
▪ Agriculture (NASA)
▪ Commercial forecasting companies

• DTN/Schneider/Telvent/Meteorlogix/Kavouras
• Panasonic Weather Systems
• Global Weather Corp
• Skymet Weather Services of India

History of DICast®



Dynamic Integrated foreCast System

Customized WRF 

HRRR

RAP

GFS

GEM

Machine Learning 
Models

.

.

.

Integrator

PostProcessing

Measurements

Other Model Input

DICast® Application

Jim Cowie
Seth Linden
Bill Petzke
Ishita
Srivastava

Multiple 
Weather 
Variables

T, RH, PoP, …
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Dynamic Integrated foreCast System

Customized WRF 

HRRR

RAP

GFS
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Other Model Input

DICast® Application

Jim Cowie
Seth Linden
Bill Petzke
Ishita
Srivastava

Multiple 
Weather 
Variables
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Wind speed example
10-15% decrease in error
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NWP Models
NAM
GFS

WRF-Solar
GEM

RAP/HRRR

Initial Grid
Interpolated to 4 km 

CONUS Grid
1-Hour Averaging 
Archive data near 
observation sites

Observations
SMUD
MADIS

OK Mesonet
BNL

SURFRAD
Xcel

DeSota
ARM

Statistical Correction/Blending
DICast Correction

Gradient Boosted Regression Trees
Cubist

Random Forests
Analog Ensemble

Output Products
Maps of solar irradiance

Single point forecasts
% of clear sky irradiance

Other met. Variables

Gridded Atmospheric Forecasts:  GRAFS-Solar

David John Gagne
Jim Cowie
Seth Linden
Bill Petzke
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Part III: 
AI/ML Postprocessing for Renewable Energy



WRF RTFDDA 
System

Center Data

NAM, GFS, HRR, 
RAP, ECMWF, GEM

Wind Farm Data
Nacelle wind speed

Generator power
Node power
Met tower
Availability 

VDRAS
(nowcasting)

Supplemental
Wind Farm Data

Met towers
Wind profiler

Surface Stations
Windcube Lidar 

Operator GUI

Meteorologist 
GUI

WRF Model Output

Wind to Energy 
Conversion 
Subsystem

Dynamic, 
Integrated 
Forecast 
System

(DICast®)

CSV Data

Statistical
Verification

Expert System
(nowcasting)

Ensemble 
System

Extreme 
Weather Events

Potential 
Power 

Forecasting

Data Mining for 
Load 

Estimation

Probabilistic 
and Analog 

Forecast

Solar Energy 
Forecast

NCAR Variable Energy Forecasting System

WRF RTFDDA 
System

Ensemble 
System

AI Method

Mahoney, W.P., K. 
Parks, G. Wiener, Y. Liu, 
B. Myers, J. Sun, L. 
Delle Monache, D. 
Johnson, T. Hopson, and 
S.E. Haupt, 2012:  A 
Wind Power Forecasting 
System to Optimize Grid 
Integration, special issue 
of IEEE Transactions on 
Sustainable Energy on 
Applications of Wind 
Energy to Power 
Systems, 3 (4), 670-682.



Wind Power Forecasts Resulted in Savings 
for Ratepayers

Drake Bartlett, Xcel

Also:  saved  > 267,343 tons CO2 (2014)

Forecasted MAE Percentage Savings
2009 2014* Improvement
16.83% 10.10% 40% $60,000,000

*Data through November, 2016

Real  Cost Savings by Using AI

Real  Emissions Savings by Using AI/ML



Haupt, S.E et al., 
2018: Building the 
Sun4Cast System: 
Improvements in 
Solar Power 
Forecasting, Bullet  
of the American 
Meteorological 
Society, Jan. 2018  
121-135. doi: 
10.1175/BAMS-D-
16-0221.1

Application of Forecasting:  Solar Power

To make the best use of renewable energy,
Utilities need to know when it will be available

• Day Ahead 

unit allocation
• Hours Ahead 

grid integration

For Solar Power, this 
means forecasting aerosols and clouds

Clear day

Cloudy day

Sun4Cast®
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Day-Ahead 
System

Nowcast
System

Haupt, S.E. and B. 
Kosovic, 2017: Variable 
Generation Power 
Forecasting as a Big 
Data Problem, IEEE 
Transactions on 
Sustainable Energy, 8
(2), pp. 725-732. 
DOI: 10.1109/TSTE.201
6.2604679.

AI as Part of Systems Engineering
Engineering the Sun4Cast® System



StatCast : Regime Dependent Forecasting

Tyler McCandless

Improvement over 
Clearness Index Persistence
ANN RD-ANN

13.7% 18.6%

McCandless, T.C., S.E. 
Haupt, and G.S. Young, 
2016:  A Regime-
Dependent Artificial 
Neural Network 
Technique for Short-
Range Solar Irradiance 
Forecasting, Applied 
Energy, 89, 351-359.



StatCast -Solar

Machine  Learning Model

– Cubist algorithm used in v1.2 
– Cubist produces rule-based linear regression 

models

• Prediction is an average of all 
rules that apply

• Cubist “Committee” parameter 
adds ensemble prediction with 
“boosting” element

– Cubist performed better than Gradient Boosted 
Regression and Random Forest Sue Dettling



NowCast Performance – DOE Project – US Sites

CIRACast
MADCast
MAD_WRF
NowCast
SmartP
Statcast_cubist
WRFSolarNow

Aggregated over All 
Issue times and All 
Sky Conditions

Component 
performance varies 
by lead time

All Compontents
have lower MAE 
(greater skill) after 
30 minutes into 
forecast (lead time)

Tara Jensen



StatCast -Solar — Applied for Kuwait

Initial Results 
– Training data from 1 Sep 2018–30 June 2019
– StatCast-Solar can add value to DICast out to 6 hours

Sue Dettling

Comparison of the Cubist model to the DICast forecasts of Kt and
smart persistence. The Cubist-based method performs best for all
time periods from 15 min to 360 min compared to either DICast or
smart persistence.

Percentage improvement of StatCast-Solar over DICast for all lead times 
from 15 min to 360 min.

Susan Dettling



Power Conversion

Pattern depends heavily on time of day, AM 
takes higher route; PM more linear route

Empirical Power Conversion:  Regression Tree - Cubist
Example for single axis tracking PV plant

Gerry Wiener



5- 95%
25-75%
An-En Mean

Uncertainty Quantification
Analog Ensemble (AnEn) Approach

Station SMUD 67, forecast initialized at 12 UTC, 15 July 2014 

Luca Delle Monache
Stefano Allessandrini

WRF-Solar
AnEn

AnEn+ BC win

Alessandrini, S., L. 
Delle Monache, S. 
Sperati, and G. 
Cervone, 2015: An 
analog ensemble 
for short-term 
probabilistic solar 
power forecast. 
Appl. Energy, 157, 
95-110, 
doi:10.1016/j.apene
rgy.2015.08.011.
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Part IV: 
AI/ML for Severe Weather Forecasting



Fuel Moisture Content Prediction System
Satellite Derived Gridded Product

+ Goal: Create Gridded Product by using Artificial Intelligence to Learn 
Representative Relationships Between Satellite Data and Surface Observations

WRF-Hydro Model
Accumulated Evapotranspiration, 

Land Use Category, Soil 
Moisture, Temperature

MODIS Satellite Data
Reflectance Bands 1-7

Surface 
Characteristics

Elevation, East/West Slope, 
North/South Slope, Regions

Fuel Moisture 
Content

Live and Dead FMC 
(Target Predictand)

Machine Learning
Trained to Learn Relationships 

Between Predictors and FMC at 
Nearest Neighbor Grid Cells 

Tyler McCandless
Branko Kosovic
Bill Petzke



Fuel Moisture Content Prediction System
Fuel Moisture Content Prediction Errors

+ Random Forest (RF)
+ 1000 trees, 25 minimum samples per split, 

25 minimum samples per leaf
+ Artificial Neural Network (ANN)
+ Gradient Boosted Regression (GBR)
+ Multiple Linear Regression (MLR)

Aqua Terra

Method Testing Testing

MLR 30.37% 30.39%

ANN 28.58% 27.76%

GBR 23.87% 23.56%

RF 21.92% 22.06%

Aqua Terra

Method Testing Testing

MLR 2.36% 3.25%

ANN 1.94% 2.65%

GBR 1.73% 2.33%

RF 1.69% 2.28%

+ DFMC Mean = 9.41%
+ DFMC Standard Devia tion = 4.51%

+ LFMC Mean = 94.9%
+ LFMC Standard Devia tion = 90.4%

Tyler McCandless
Branko Kosovic
Bill Petzke

Live Fuel Moisture ContentDead Fuel Moisture Content



Fuel Moisture Content Prediction System
Final Models

+ Final Gridded Product Provides More Realistic Representation of Fuel Moisture 
Content Across CONUS

Gridded DFMC Predictions Gridded LFMC Predictions

LFMC Observation SitesDFMC Observation Sites

Live Fuel Moisture ContentDead Fuel Moisture Content

Tyler McCandless
Branko Kosovic
Bill Petzke



+ Cold Springs fire simulated using constant Dead Fuel Moisture Content of 
8% and machine learning predicted DFMC 

+ Our NWP-based wildland fire prediction model tends to overestimate the 
rate of spread of fire due to lack of including fire suppression

+ Thus, it is positive to see burn area increase

Fuel Moisture Content Prediction System

WRF-Fire Evaluation

Distribution of the 
estimated DFMC

Constant DFMC ML-based DFMC - RF

Tyler McCandless
Branko Kosovic
Bill Petzke



Interpretable Deep Learning for Severe 
Weather Research and Forecasting

Gagne II, D.J., S.E. Haupt, D.W. Nychka, and G. Thompson, 2019: Interpretable Deep Learning for Spatial Severe Hail 
Forecasting, Monthly Weather Review, 147, 2827-2845.  DOI: 10.1175/MWR-D-18-0316.1 35

Convolutional Neural Networks

Feature Visualization by Optimization
Conv Net with 
fixed weights

Storm 
Patch

Desired 
Label

Forward pass to infer 
probability

Backpropagate error to 
update input image



Optimized Conv Net Hailstorm

Feeder-Seeder Mechanism 
(Heymsfield 1980)

Reconstruct storms with 
vertical structures that 
make sense dynamically 
and physically.

Gagne II, D.J., S.E. Haupt, D.W. Nychka, G. Thompson, 2019: Interpretable Deep Learning for Spatial Severe 
Hail Forecasting, Monthly Weather Review, 147, 2827-2845.  DOI: 10.1175/MWR-D-18-0316.1.



Impact of Using Convolutional 
Neural Networks

Convolutional neural 
networks produce 
more skilled hail 
predictions than other 
models.

Convolutional neural 
networks encode 
realistic storm 
features and hail 
growth processes.

Internal representations of 
deep learning models could 
enable more sophisticated 
analysis of large weather and 
climate data.

Gagne II, D.J., S.E. Haupt, D.W. Nychka, G. Thompson, 2019: Interpretable Deep Learning for Spatial Severe 
Hail Forecasting, Monthly Weather Review, 147, 2827-2845.  DOI: 10.1175/MWR-D-18-0316.1.



Applying Deep Learning to Many Problems:
Atmospheric Rivers

Chapman, W. E., Subramanian, A. C., Delle Monache, 
L., Xie, S. P., & Ralph, F. M. ( 2019). Improving atmospheric 
river forecasts with machine learning. Geophysical 
Research Letters, 46, 10627–
10635. https ://doi.org/10.1029/2019GL083662

Main Results: 
• The  GFS forecas t fie ld of integrated vapor 

transport is  used for a  convolutiona l neura l 
ne twork‐based forecas t pos t-process ing method.

• The  machine  lea rning a lgorithm reduces  the  
full‐fie ld RMSE and improves  the  corre la tion with 
ground truth.

• An error decons truction shows  tha t the  dominant 
improvements  come from the  reduction of random 
error and conditional biases .

Storm shapes determined the network’s adjustments. Similar storm 
(i.e. zonal, meridional, stunted etc.) types were corrected in very 
similar ways.

https://doi.org/10.1029/2019GL083662
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Part V: 
AI/ML for Model Parameterization



Machine Learning for 
Surface Layer Parameterization

• Surface layer parameterizations model energy transfer 
(flux) from atmosphere to land surface

• Monin-Obukhov similarity theory  determines surface 
fluxes and stresses in atmospheric models. 

• Stability functions Φ𝑀𝑀 (momentum) and Φ𝐻𝐻 (heat) are 
determined empirically from field experiments.

• However, the stability functions show a large amount 
of variation.

• Instead, we will use machine learning flux estimates.
• We have therefore selected two data sets that provide multiyear 

records:
• KNMI-mast at Cabauw (Netherlands), 213 m tower, 2003 -

2017
• FDR tower near Scoville, Idaho, 2015 – 2017

• Fit random forest to each site to predict friction velocity, sensible 
heat flux, and latent heat flux

https://nevada.usgs.gov/et/measured.htm

Cabauw Idaho
Gagne, McCandless, Kosovic, Haupt



Input and Output Variables

Input Variables Heights (Idaho/Cabauw)
Potential Temperature Gradient (K) Skin to 10 m, 15 m/20 m
Mixing Ratio Gradient (g kg-1) Skin to 10 m, 20 m
Wind Speed (m s-1) 10 m, 15 m/20 m

Bulk Richardson number 10 m- 0 m
Moisture Availability (%) 5 cm/3 cm
Solar Zenith Angle (degrees) 0 m

Output equations

Predictands
u*=Friction velocity
θ*=Temperature scale
q*=Moisture scale

41

ML Procedure
1. Train ML models on observations
2. Plug in ML models to WRF in surface layer parameterization
3. Surface layer parameterization derives necessary outputs from ML 

predictions



Random Forest and ANN Prediction of 
Surface Layer Variables

Random Forest M-O Neural Network

Gagne, 
McCandless, 
Kosovic, 
Haupt

Temperature 
Scale

Moisture 
Scale

Both Random Forest 
and Neural Networks 
consistently outpredict
Monin-Obukov
Similary Theory
 Higher Correlation
 Lower MAE



Cross -Testing ML Models
R2 MAE

Idaho Test Dataset
Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

MO Similarity 0.85 0.42 0.077 0.203
RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023
RF Trained on 
Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE
Cabauw Test 
Dataset

Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

MO Similarity 0.90 0.44 0.14 0.115 0.062 0.135
RF Trained on 
Cabauw 0.93 0.82 0.73 0.031 0.030 0.055
RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

Gagne, McCandless, Kosovic, Haupt
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 Random Forest significantly outperforms 
Monin-Obukov Theory

 True even when applied to site that is 
different than the one trained



Summary:
• Machine Learning is advancing 

applications of weather forecasting
• NCAR has been involved for a couple decades
• A Big Data / IoT application (not new)
• A necessary component of modern 

weather forecasting systems
• Interpretable Deep Learning may be the future

NCAR is sponsored by the National Science Foundation

AI-Physics Blended System
• Planned outcome: to advance 

applications of weather forecasting 
through systems approach, HPC, and 
machine learning
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