
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Porting IDL programs into Python for
GPU-Accelerated In-situ Analysis

July, 2021

Damir Pulatov
NCAR & University of Wyoming

Partner: Bo Zhang
Mentors: Supreeth Suresh, Cena Miller

• MURaM is the primary solar model
used for simulations of the upper
convection zone, photosphere and
corona.

• 100x acceleration is needed to
keep up the simulation with the
real time data from telescope.

• MURaM have been ported to use
scalable GPUs to achieve this!

• As computation is optimized, I/O
and post processing becomes the
next major bottleneck.

2

• Thus, both converting this workflow to an in-situ approach and a staging-based IO
subsystem for this in-situ workflow are critical problems need to be addressed.

Background

● One bottleneck is post processing analysis

● A way to reduce the bottleneck is to parallelize data analysis

● Current analysis programs are in IDL

● IDL is proprietary has a small community (astrophysics
researchers)

● Python is a better choice for analysis: open source, large library
selection, can be optimized for different hardware

Click to add footer 3

Motivation

4

Bigger Picture

● Port analysis IDL programs into Python

● Optimize Python code (better data structures, efficient libraries,
etc.)

● Parallelize Python code for both CPUs and GPUs

● Integrate Python analysis scripts with the larger workflow

● If time permits, look into automating IDL to Python conversion

Click to add footer 5

Goals

Click to add footer 6

Algorithm

7

Top View

 Python IDL

8

More about my experience + comparison of the two languages:
https://wiki.ucar.edu/display/~dpulatov/Comparison+of+IDL+and+
Python

 Python IDL

Side View

https://wiki.ucar.edu/display/~dpulatov/Comparison+of+IDL+and+Python
https://wiki.ucar.edu/display/~dpulatov/Comparison+of+IDL+and+Python

9

Benchmarking

10

Code Profiling

Python:

IDL:

Numpy
● Numerical computation library for Python
● Fast array operations written in C

Xarray
● Extends Numpy with labels
● Intuitive data access thanks to metadata
● Tailored to work with NetCDF format

11

Libraries

12

● Xarray allows easy read/write with Zarr/NetCDF formats
● Implemented a variable reader for MURaM that saves data

into Zarr
● Zarr is format for storing compressed, chunked arrays

Zarr/NetCDF

Dask
● Library for parallel computing
● Integrates well with Numpy and Xarray

Cupy
● Array library for GPU computing
● Almost drop-in replacement for Numpy

Numba
● Just-in-time compiler for Python
● Translates Python to machine code

Cython
● Static compiler
● Makes writing C extensions easy

13

Parallelism in Python

Click to add footer 14

Libraries Results

Dask Algorithm too complex for Dask to parallelize

Cupy Limited support for Scipy functions in our
implementation

Numba No parallelization due to mixing of data types

Cython No parallelization due to GIL in CPython

Exploring Parallelism

There are two potential routines to parallelize: tracing and
interpolation. Both were explored during this stage.

● Reimplement interpolation in C++ with native support for
parallelism instead of Python

● idlwrap library provides IDL-like interface for Python
Not complete, possible avenues for improvement

● Using/extending IDL to Python translators
pyIDL, Pike, i2py
None are complete, all projects are abandoned

Click to add footer 15

Future Work

● Administrative: Jerry Cyccone, Max Cordes Galbraith, Virginia Do,
AJ Lauer

● Technical & Feedback: Anderson Banihirwe, Sheri Mickelson, Jian
Sun, Brian Dobbins, John Dennis, Richard Loft

Click to add footer 16

Acknowledgement

Click to add footer 17

Questions?

