Porting IDL programs into Python for

GPU-Accelerated In-situ Analysis

Damir Pulatov
NCAR & University of Wyoming
Partner: Bo Zhang
Mentors: Supreeth Suresh, Cena Miller

B NCAR

ial is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977, .

4

Background

« MURaM is the primary solar model
used for simulations of the upper J e WP
convection zone, photosphere and
corona.

 100x acceleration is needed to
keep up the simulation with the
real time data from telescope.

« MURaM have been ported to use
scalable GPUs to achieve this!

» As computation is optimized, I1/O
and post processing becomes the
next major bottleneck.

MU RaM 5|mulat|on of solargra nulatlon

» Thus, both converting this workflow to an in-situ approach and a staging-based IO
subsystem for this in-situ workflow are critical problems need to be addressed.

e One bottleneck is post processing analysis

e A way to reduce the bottleneck is to parallelize data analysis
e Current analysis programs are in IDL

e IDL is proprietary has a small community (astrophysics
researchers)

e Python is a better choice for analysis: open source, large library
selection, can be optimized for different hardware

NCAR

UCAR ‘ Click to add footer

Bigger Picture

¢y |Meta Data

(Node - Analysis

e Port analysis IDL programs into Python

e Optimize Python code (better data structures, efficient libraries,
etc.)

e Parallelize Python code for both CPUs and GPUs
e Integrate Python analysis scripts with the larger workflow

e If time permits, look into automating IDL to Python conversion

NCAR

UCAR ‘ Click to add footer

trace points trace points

yes

tracing in a positive direction tracing in a negative direction

A 4

[combine]
results

NCAR

UCAR Click to add footer

Top View

Python

top view on field lines

&
2
&

O e e R e

&6

NCAR
UCAR

Side View

Python

side view on field lines e s

<
&
<
<
e
<
<
o
&
<
&
<.
&
5
Ko
<>
&

-
EINELP NS
100

More about my experience + comparison of the two languages:

NCAR
UCAR

https://wiki.ucar.edu/display/~dpulatov/Comparison+of+IDL+and+Python
https://wiki.ucar.edu/display/~dpulatov/Comparison+of+IDL+and+Python

Benchmarking

IDL vs. Python

20-
15-
B |
o anguage
810_ B DL
> Python

IDL Python
language

NCAR
UCAR

Python:

#1: 6.189 evaluate linear

#2: 5.111 [self]
#3: 4.326 find indices

IDL.:
Module Type Count
DBLARR (s) 3
FINDGEN (s) 2
FLTARR (s) 1
HELP (s) 1
INTERPOLATE (s) 4488

NCAR
UCAR

Code Profiling

Only(s)
1.190213
0.000021
0.000071
0.000046
1.003250

Avg.(s)
0.396738
0.000010
0.000071
0.000046
0.000224

Time(s)
1.190213
0.000021
0.000071
0.000046
1.003250

scipy/interpolate/interpolate.py:2534 call tree depth: 4
call tree depth: 5
scipy/interpolate/interpolate.py:2554 call tree depth: 4

Avg.(s) LinesRun Total

0.396738
0.000010
0.000071
0.000046
0.000224

(SR R

0

0
0
0
0

Libraries

Numpy oS

ZS
e Numerical computation library for Python N:: NumPy

e Fast array operations written in C

Xarray
e Extends Numpy with labels
e [ntuitive data access thanks to metadata Y 4
e Tailored to work with NetCDF format ’ ' Xarray

NCAR
UCAR

Zarr/NetCDF

e Xarray allows easy read/write with Zarr/NetCDF formats

e Implemented a variable reader for MURaM that saves data
into Zarr

e Zarr is format for storing compressed, chunked arrays

xarray.Dataset

Dimensions: (x: 288, y: 144, z: 576)
Coordinates: (0)

v Data variables:

VX (z,x,y) float32 3.898e+03519.4 ... -1.061e+06 nl
shape : (576, 288, 144)

by (z,x,y) float32 -412.6 -320.7 ... -0.6506 -0.4422 B S
bx (z, x,y) float32 -352.5-126.0 214.5 ... 13.29 13.28 RS
bz (z, x,y) float32 -623.5-419.3 ... 2.681 2.735 B S
rho (z, x,y) float32 0.0004166 0.0004166 ... 1.654e-16 2 =S
vy (z, x,y) float32 537.7 307.7 ... -4.539e+05 =R

v Attributes:

description : MURaM files converted into zarr format

NCAR
UCAR

Parallelism in Python

Dask

e Library for parallel computing
e Integrates well with Numpy and Xarray

Cupy
e Array library for GPU computing
e Almost drop-in replacement for Numpy

Numba

e Just-in-time compiler for Python
e Translates Python to machine code

Cython

e Static compiler
e Makes writing C extensions easy

NCAR
UCAR

Exploring Parallelism

There are two potential routines to parallelize: tracing and
interpolation. Both were explored during this stage.

Libraries Results
Dask Algorithm too complex for Dask to parallelize
Cupy Limited support for Scipy functions in our
implementation
Numba No parallelization due to mixing of data types
Cython No parallelization due to GIL in CPython

NCAR

UCAR ‘ Click to add footer

e Reimplement interpolation in C++ with native support for
parallelism instead of Python

e idlwrap library provides IDL-like interface for Python
Not complete, possible avenues for improvement

e Using/extending IDL to Python translators
pylIDL, Pike, i2py
None are complete, all projects are abandoned

NCAR

UCAR ‘ Click to add footer

Acknowledgement

e Administrative: Jerry Cyccone, Max Cordes Galbraith, Virginia Do,
AJ Lauer

e Technical & Feedback: Anderson Banihirwe, Sheri Mickelson, Jian
Sun, Brian Dobbins, John Dennis, Richard Loft

NCAR

UCAR ‘ Click to add footer

Questions?

NCAR

UCAR ‘ Click to add footer

