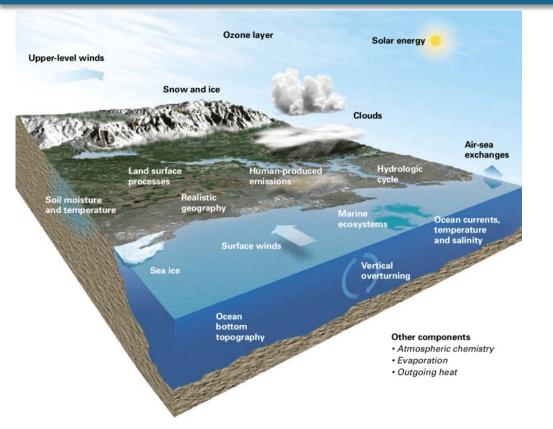





# Using A Cloud -Friendly Data Format in Earth System Models



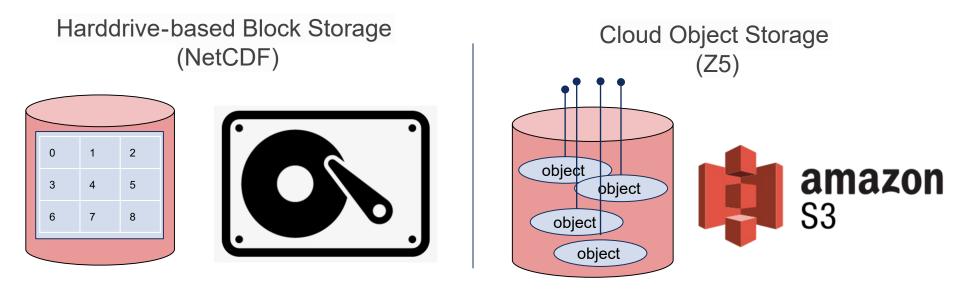
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.




- 1. Background
- 2. Integrating Z5 into Community Earth System Model (CESM)
- 3. Performance Analysis
- 4. Conclusion
- 5. Future work

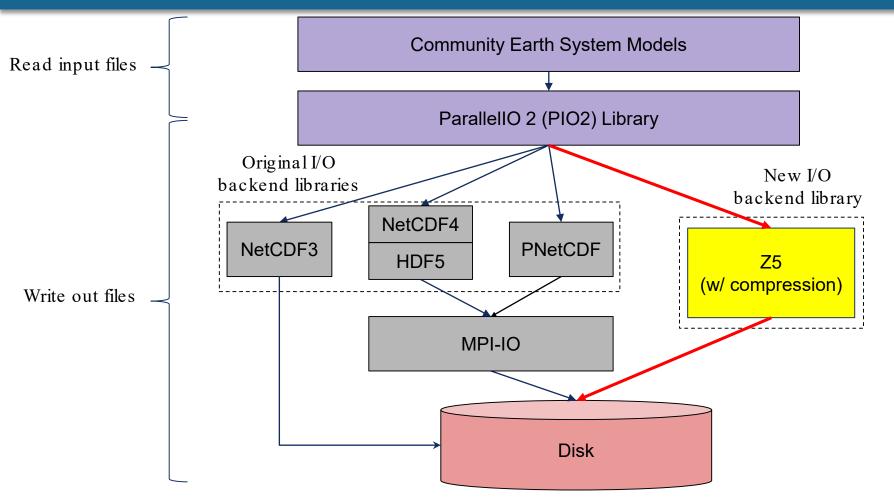
#### Google Earth

Loading in progress. 0 of 5,972,000,000 trillion tonnes of rock processed.


### **Community Earth System Model**



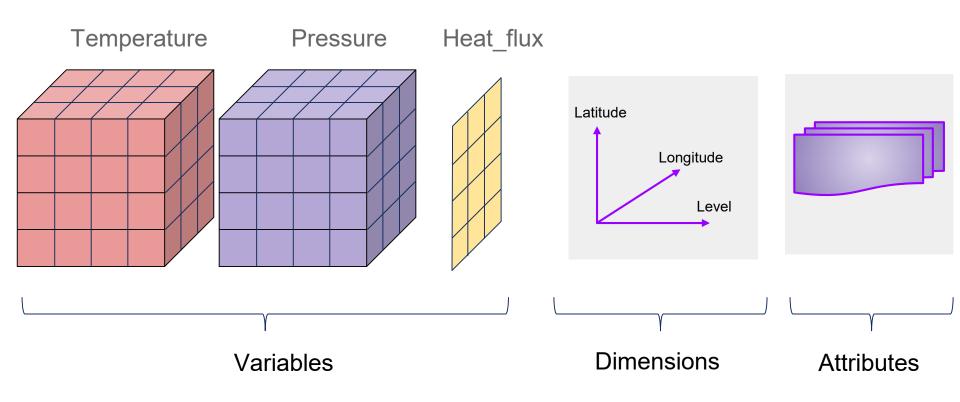
- CESM provides computing simulations of earth's past present, and future climate states
- CESM allows investigation of problems including climate, weather, earth, the water cycle, etc.
- CESM's traditional data format is NetCDF


#### Figure 1. Community Earth System Model

# Storage System



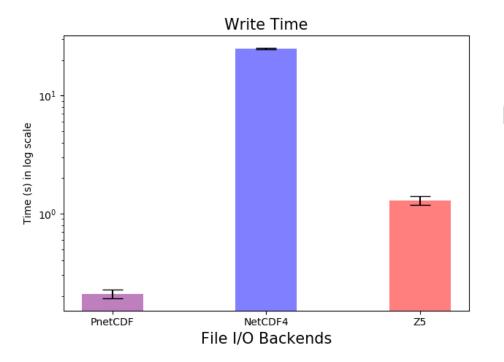
- NetCDF data formats are used in harddrive-based block storage and are difficult to access in object -based cloud storage system. A cloud -friendly data format is needed for the CESM simulation in the cloud.
- NetCDF developers are planning to add Z5 as a new backend.


#### CESM I/O Workflow





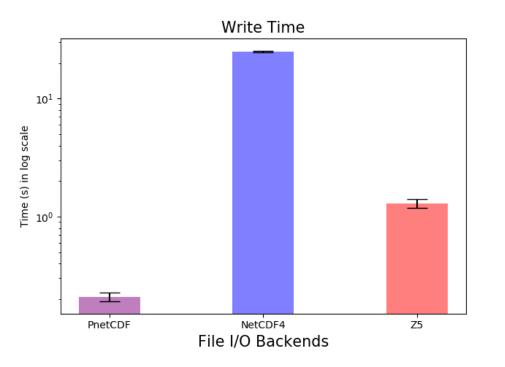
- 1. Add Z5 to CESM by integrating it into the ParallelIO 2 (PIO2) library.
  - PIO2: A high-level Parallel I/O Library, backed by MPI (Message Passing Interface)
  - PIO2 currently supports NetCDF data formats
  - Z5 is a cloud-friendly data format and a C++ package providing an implementation of compressed, chunked, N-dimensional arrays, designed for use in parallel computing
  - Write C API Wrapper for Z5
- 2. Analyze the I/O performance via CESM simulation.


#### Data Model



# We add Z5 into PIO2 as an alternate file I/O backend

| int                              | PIOc_createfile                                                                     | ( int     | iosysid,  | int  | *ncidp,  | int        | *ioty | pe, c | const | char | *fname, | int | mode); |
|----------------------------------|-------------------------------------------------------------------------------------|-----------|-----------|------|----------|------------|-------|-------|-------|------|---------|-----|--------|
|                                  | if(file                                                                             | - >iotype | == PIO_I0 |      | _NETCD   | F)         |       |       |       |      |         |     |        |
|                                  | nc_create(const char *path, int cmode, int* ncidp);                                 |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | else if (file - >iotype == PIO_IOTYPE_Z5)                                           |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | z5CreateFile ( char * path);                                                        |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | //                                                                                  |           |           |      |          |            |       |       |       |      |         |     |        |
| int                              | PlOc_def_var (                                                                      | int ncid  | , const   | char | *name, n | c_type xty | pe,   | int   | ndin  | ns,  |         |     |        |
| const int *dimidsp, int *varidp) |                                                                                     |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | if(file ->iotype == PIO_IOTYPE_NETCDF)                                              |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | nc_def_var(int ncid, const char* name, nc_type xtype,                               |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | int ndims, const int* dimidsp, int* varidp);                                        |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | else if (file - >iotype == PIO_IOTYPE_Z5)                                           |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | // It supports multiple data types: int8, int16, int32, int64, double, float, uint8 |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | <b>z5CreateFloat32Dataset</b> ( char *path, unsigned int ndim, size_t *shape,       |           |           |      |          |            |       |       |       |      |         |     |        |
|                                  | size_t *count, int cuseZlib = 1, int level =                                        |           |           |      |          |            |       |       |       |      |         |     |        |


## Performance Results in 1 -degree Res. on 30 nodes



#### **Experiment Settings:**

The experiment is conducted in 1 degree resolution of CESM simulation on 30 nodes on Cheyenne Supercomputer using Intel compiler. It is similar to the run in production.

## **Performance Analysis**



#### Preliminary results:

- PnetCDF is fast (~0.2s), however, it does not have compression capability.
- NetCDF4 (~24.9s) has compression but has poor performance
- Z5 is much faster (~1.3s) than NetCDF4 and has compression enabled. Though, Z5 is slower than PnetCDF by 10% in total CESM simulation time.

# **Project Impact**

#### Codebase Contribution:

1. Contributed **1400+** lines of code for C API wrapper for Z5 https://github.com/kmpaul/cz5test/

1. Contributed **3200+** lines of code for PIO2-Z5 integration <a href="https://github.com/weilewei/ParallellO">https://github.com/weilewei/ParallellO</a>

External Impact:

- 1. Solved Z5 issue <u>C API wrapper for z5 #68</u>
- 1. 2 accepted pull requests in Z5
  - fix file creation and add nlohmann\_json support in CMakeLists #115
  - add writeMetadata for the file handle #114

## Conclusion

 Low learning curve : In PIO2, user can reuse same API and workflow to do file I/O with Z5 backend

**1. New I/O backend:** Z5 is a feasible file I/O backend for CESM and is cloud-friendly

**1. Performance:** Z5 has adequate performance to PnetCDF, is much faster than NetCDF and has compression capability.

# Future Work

 To test Z5 supported CESM in cloud services (i.e. AWS S3, Google Cloud, Microsoft Azure)

2. To study the scaling performance of Z5 I/O backend in CESM

## Acknowledgement

#### Many thanks to my mentors Haiying Xu, John Dennis, Kevin Paul!

Many thanks to SIParCS fellows and AJ Lauer, Virginia Do, Eliott Foust, and Blake Lewis!









# Using A Cloud -Friendly Data Format in Earth System Models

 Weile Wei<sup>12</sup>
 Haiying Xu<sup>2</sup>
 John Dennis<sup>2</sup>
 Kevin Paul<sup>2</sup>

 1 Louisiana State University

 2 National Center for Atmospheric Research

 NCAR

 Boulder, CO | July 30th, 2019 | weilewei09@gmail.com



16

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.