
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Analysis of FastEddy® Model Data on GPUs

July 29, 2020

Shay Liu,
NCAR CISL SIParCS 2020 intern

1

Mentors
Supreeth Suresh and Cena Miller

Outline

● Introduction
● Project goals
● Timeline
● Single GPU data analysis
● Multi-node GPU data analysis
● Results
● Summary

2

Introduction
● Model analysis is traditionally done on CPUs

● Model analysis is often embarrassingly parallel and
compute intensive

● These types of tasks are well suited for GPU
acceleration

● FastEddy® is a GPU-based large eddy simulation
(LES) model developed in RAL, which produces large
datasets

● Using GPUs for FastEddy® analysis potentially
reduces I/O and helps create a faster process of
analysis for the science team

3

Video courtesy of Dr. Jeremy Sauer, NCAR RAL

Project Goals

1. Become familiarized with the
architecture of GPUs

2. Perform FastEddy® data analysis on
GPUs
a. Single GPU execution
b. Multi-GPU execution

3. Prototype a simplified GPU
acceleration of the data science phase
a. Accelerate data analysis on GPUs to

match the high-speed data production
on GPUs

4

I/O

FastEddy® output
data on GPU

Data moved to
CPU

Data analysis on
CPU

FastEddy® output
data on GPU

Data analysis on
GPU

Save Results

Save Results

I/O

Traditional CPU
Execution

GPU Execution

5

Work Progress

Learning Single GPU Multi-GPUsEnvironment setup

6

Initial Setup

Setting up environment

• Conda environment

• Package installation

• JupyterLab extensions

Learning

• NVIDIA Courses about RAPIDS

• Cupy, CuDF, CuGraph, and Dask

Libraries

7

● Cupy is a python library to do element-wise array operations on GPU
○ Analogous to numpy on CPU

● Cupy simplifies GPU acceleration process
● Cupy preserves data structures

Cupy

Dask

● Dask schedules tasks for parallelism and distributes the workload for you
● Dask uses lazy evaluation and thus optimizes load and store of data
● Dask works with xarray, cupy, numpy, pandas, cudf, etc

JupyterLab

● JupyterLab is a web-based interactive development environment (IDE)
● JupyterLab supports dask lab extensions to monitor work processes

System Details

● Up to 384 GB DDR4-2666 memory per node
● 2 18-core 2.3-GHz Intel Xeon Gold 6140 (Skylake) processors per node
● 2 TB local NVMe Solid State Disk
● 1 Mellanox ConnectX-4 100Gb Ethernet connection (GLADE, Campaign Storage, external

connectivity)
● 1 Mellanox ConnectX-6 HDR100 InfiniBand link
● 1 NVIDIA Quadro GP100 GPU 16GB PCIe on each of 8 nodes

8

NCAR Casper Supercomputer

8

9

Dask Execution Workflow

Scale
the job
to 2
workers

workload:
x

Move to
CPU for
plotting

Calculate()
GPU

x/2 on worker 0

Node 0

Client Client

Set up
cluster

Calculate()
GPU

x/2 on worker 1

Worker 1
Convert cupy

to numpy
x/2

Node 1

Worker 1
Convert numpy

to cupy
x/2

Worker 1
CPU
x/2

Worker 0
Convert numpy

to cupy
x/2

Worker 0
CPU
x/2

Worker 0
Convert cupy

to numpy
x/2

10

Dask Working Example: Scheduler, Workers, & Delayed Objects

cluster = SLURMCluster(cores=1, processes=1, walltime='01:00:00',
scheduler_options={"dashboard_address" :'0.0.0.0'},
extra=['--resources GPU=1'],
job_extra=['--constraint=gpu','--account=ntdd0002',
'--reservation=TDD_2xgp100','--mem=0'],
env_extra=['module load cuda/10.1',])

client = Client(cluster)
cluster.scale(2)

@dask.delayed
def my_func(filepath):

x = cupy.array(y)
return(x)

!squeue -u $USER -l

Mon Jul 20 17:53:42 2020
 JOBID PARTITION NAME USER STATE TIME TIME_LIMI NODES
NODELIST(REASON)
 5614085 dav dask-wor xuecliu RUNNING 0:02 1:00:00 1 casper06
 5614086 dav dask-wor xuecliu RUNNING 0:02 1:00:00 1 casper07
 5613902 dav srun xuecliu RUNNING 37:33 6:00:00 1 casper23

Request 2 computing nodes with 1 GPU each (inside a Jupyter session)

results = my_func(filepath)
x = results.compute()

Monitor Work with Dask Graphic Extensions
Dask-labextension + nvdashboard in a JupyterLab session

11

Validation

12

Reference (CPU) Test on GPU

Turbulent
heat flux

Horizontal
perturbation
wind speed

Difference

 xIndex xIndex xIndex

zI
nd

ex
zI

nd
ex

Results

13

(1 file) (1 file)
(2 files)

● Speedup for analysis of a single file:
○ 302x for 1-thread CPU vs. 1 GPU
○ 15.3x for 36-thread CPU vs. 1 GPU

● Speedup for analysis of two files:
○ 26.3x for 2 nodes, 36-thread CPU vs.

2 nodes with 1 GPU on each node

Summary and Future Work

14

● Cupy significantly improves and simplifies the process
of GPU acceleration for data analysis

● Dask + cupy together facilitate data analysis on
multi-GPUs

Summary

● Incorporate an in-situ GPU acceleration workflow in
FastEddy®

Future work

Acknowledgements

Technical & Scientific Support

● Anderson Banihirwe, NCAR CISL

● Mick Coady, NCAR CISL

● Dr. Raghu Raj Kumar, NVIDIA

● Dr. Richard Loft, NCAR CISL

● Dr. Jeremy Sauer, NCAR RAL

Administrative Support

● AJ Lauer, NCAR CODE

● Virginia Do, NCAR CODE

● Jerry Cyccone, NCAR Education & Outreach

● Jess Hoopengardner, NCAR CODE

15

Thank you.

Questions?

16

