Please Stop and Smell the Tracers: Predicting Tracer Concentration Behavior in Low-Order Models with Data Assimilation

FAIRUZ ISHRAQUE Colgate University July 2021

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Motivation

Determining the harm posed by these tracer contaminants/pollutants requires better understanding of tracer concentration behaviors in the atmosphere as well as source characterization

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Data assimilation combines model forecasts with observations to produce better predictions

- Often used in numerical weather prediction
- Very good at predicting behaviors of systems sensitive to initial conditions

Throwing a ball

The prediction model for this system is quite $simple x_{initial} + u_{initial} t$

$$y = y_{initial} + v_{initial}t - 1/2 gt^2$$

Throwing a ball The prediction model for this system is quite simpler $u_{initial} + u_{initial}t$ Realistically, the initial conditions $y = y_{initial} + v_{initial}t - 1/2 gt^2$ are uncertain 8 Time 0.0 secs 6 Height ⁴ 2 0 -2 2 4 6 8 0 10 Distance **Jeff Anderson**

We run the model with an **ensemble** of different initial conditions

Data assimilation narrows down the range of results the ensemble returns by combining observations with ensemble results

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Bayes' Theorem

Bayes' Theorem can be thought of a way of updating our beliefs on a hypothesis in the light of new information

Posterior

The probability distribution of the The probability distribution of the parameter x given the evidence.

observed Evidence independently from any parameter value.

Prior: The model forecast

Likelihood: The observations

Evidence: Normalization constant

Posterior: Updated estimate

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

1. Prior ensemble:

1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).

1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).

- 1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).
- 2. Kalman filter product (Bayes' Theorem) of observation likelihood (red) with prior (green)

- 1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).
- 2. Kalman filter product of observation likelihood (red) with prior (green) to get gaussian posterior (blue).

- 1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).
- 2. Kalman filter product of observations (red) with prior (green) to get gaussian posterior (blue).

3. Shift ensemble members to have posterior mean.

Courtesy of Jeff Anderson

- 1. Prior ensemble: fit a gaussian, sample mean and covariance (pdf is green contours).
- 2. Kalman filter product of observations (red) with prior (green) to get gaussian posterior (blue).

3. Shift ensemble members to have posterior mean.

4. Compact ensemble to have posterior covariance.

- 1. Prior ensemble: fit a Gaussian, sample mean and covariance (pdf is green contours).
- 2. Kalman filter product of observations (red) with prior (green) to get Gaussian posterior (blue).

3. Shift ensemble members to have posterior mean.

4. Compact ensemble to have posterior covariance.

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

The Model – The Lorenz 96

- A dynamical system constructed by Edward Lorenz as a problem for numerical weather prediction
- Describes a single scalar quantity as it evolves (through forcing, dissipation, and advection) on a circular array of sites
- Commonly used as model problem in data assimilation

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

The Model – Semi-Lagrangian Advection

The **Semi-Lagrangian** scheme is used to model how tracer particles get distributed upstream across the grids by the Lorenz 96 winds

- Tracer particle land on predefined gridpoint at tⁿ⁺¹
- Tracer particle trajectory backward integrated by one time step to time tⁿ, often landing between gridpoints
- The concentration of tracer at tⁿ⁺¹ is determined by linearly interpolating tracer concentration at the position during time tⁿ

Cushman-Roisin & Beckers

The Model – Semi-Lagrangian Advection

The **Semi-Lagrangian** scheme is used to model how tracer particles get distributed upstream across the grids by the Lorenz 96 winds

- Source at site 1 with rate of 100/s
- Exponential sinks at every site

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Nature of the Observations Assimilated

- All observations were synthetic
- 40 observations for wind at each timestep
- 40 observations for tracer concentration at each time step
- Observations were randomly distributed among the 40 Sites

Assimilation Settings

- 40 ensemble members for each assimilation run
- Maximum allowed localization 1.2
- Localization cutoff 0.2
- Timestep 0.05
- Forcing 8

Results – Assimilated Timeseries

Assimilation Results of Wind Values at Site 1 for 50 Timesteps

Results – Assimilated Timeseries

Assimilation Results of Tracer Concentration Values at Site 1 for 50 Timesteps

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Results – Assimilation Error

Run Type	State Ensemble Mean Error	State Ensemble Mean Spread	Tracer Ensemble Mean Error	Tracer Ensemble Mean Spread
No Assimilation	23.1688	22.9384	7.9196	9.1916
Assimilate State Obs	1.7656	1.9191	1.043	1.1736
Assimilate Tracer Obs	22.8191	22.4523	3.7832	3.7914
Assimilate State and Tracer Obs	1.6284	1.7289	0.71986	0.7956

Results – Assimilation Error

Only Assimilating Tracer Observations (Zoomed in at Wind

Ensemble Mean Error - 22.8191

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Results – Source Characterization

Characterizing source location and rate (of 100) by assimilating wind and tracer observations

Source at Site 1

Source at Site 1 and 20

- 1. Motivation
- 2. Data Assimilation: A general description
- 3. Bayes' Theorem
- 4. Ensemble Adjustment Kalman Filter
- 5. The Model The Lorenz 96
- 6. The Model Semi-Lagrangian Advection
- 7. Results Assimilated Timeseries
- 8. Results Assimilation Error
- 9. Results Source Characterization
- 10. Further Steps

Further Steps

- Exploring source characterization capabilities of data assimilation in Lorenz 96 with lower quality observations
- Implementing tracer advection in higher level circulation models
- Exploring novel assimilation techniques designed specifically for tracers

Acknowledgements

- Mentors: Jeff Anderson, Helen Kershaw
- Data Assimilation Research
 Section
- CODE Team
- Fellow SIParCS Interns
 Any Questions?

You can reach me at:

- Email:
 - ishraque@colgate.edu
- LinkedIn: Fairuz Ishraque