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Motivation
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Determining the harm 
posed by these tracer 
contaminants/pollutants 
requires better 
understanding of tracer 
concentration behaviors in 
the atmosphere as well as 
source characterization
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Data Assimilation: A General Description
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Prediction Model Observing System

Data Assimilation

Forecasts
Observations

Analysis or Best Estimate

Data assimilation combines model forecasts with observations to produce better 
predictions

- Often used in numerical weather prediction
- Very good at predicting behaviors of systems sensitive to initial conditions
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Throwing a ball
The prediction model for this system is 
quite simple:
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Throwing a ball
The prediction model for this system is 
quite simple: Realistically, the 

initial conditions 
are uncertain

Jeff Anderson



Data Assimilation: A General Description
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We run the model with an ensemble of different initial 
conditions

Data assimilation narrows down the range of results the ensemble 
returns by combining observations with ensemble results

Jeff Anderson
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Now we combine ensemble results with observations of 
the position of the ball (every 2 seconds) to improve 
estimates
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Now we combine ensemble results with observations of 
the position of the ball (every 2 seconds) to improve 
estimates
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Bayes’ Theorem
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Bayes’ Theorem can be thought of a way of updating our 
beliefs on a hypothesis in the light of new information

Prior: The model 
forecast

Likelihood: The 
observations

Evidence: Normalization 
constant

Posterior: Updated 
estimate
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1. Prior ensemble:

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product (Bayes’ Theorem) of observation 
likelihood (red) with prior (green)

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observation likelihood (red) with 
prior (green) to get gaussian posterior (blue). 

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.

4. Compact ensemble 
to have posterior 
covariance.

Ensemble Adjustment Kalman Filter
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1. Prior ensemble: fit a Gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get Gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.

4. Compact ensemble 
to have posterior 
covariance.

Ensemble Adjustment Kalman Filter

Please Stop and Smell the TracersCourtesy of Jeff 
Anderson
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The Model – The Lorenz 96
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• A dynamical system 
constructed by Edward 
Lorenz as a problem for 
numerical weather 
prediction

•  Describes a single scalar 
quantity as it evolves 
(through forcing, 
dissipation, and advection) 
on a circular array of sites

• Commonly used as model 
problem in data assimilation
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The Model – Semi-Lagrangian Advection
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• Tracer particle land on 
predefined gridpoint at tn+1

•  Tracer particle trajectory 
backward integrated by one 
time step to time tn , often 
landing between gridpoints

• The concentration of tracer 
at tn+1 is determined by 
linearly interpolating tracer 
concentration at the 
position during time tn

The Semi-Lagrangian scheme is used to model how tracer particles get 
distributed upstream across the grids by the Lorenz 96 winds

Semi-Lagrangian in 
2D

Semi-Lagrangian in 
1D

Cushman-Roisin & 
Beckers

Backward 
Integration
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The Model – Semi-Lagrangian Advection
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The Semi-Lagrangian scheme is used to model how tracer particles get 
distributed upstream across the grids by the Lorenz 96 winds

• Source at site 1 with rate of 100/s
• Exponential sinks at every site
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Results – Assimilated Timeseries 
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Nature of the 
Observations 
Assimilated

• All observations were 
synthetic

• 40 observations for wind at 
each timestep

• 40 observations for tracer 
concentration at each time 
step

• Observations were 
randomly distributed among 
the 40 Sites

Assimilation Settings

• 40 ensemble members for 
each assimilation run

• Maximum allowed 
localization – 1.2

• Localization cutoff – 0.2
• Timestep - 0.05
• Forcing - 8 
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Results – Assimilated Timeseries 
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Timesteps (5000)

Timesteps (5000)

Timesteps (5000)

Timesteps (5000)

Assimilation Results of Wind Values at Site 1 for 50 
Timesteps
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Results – Assimilated Timeseries 
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Timesteps (5000)

Timesteps (5000) Timesteps (5000)

Timesteps (5000)

Assimilation Results of Tracer Concentration Values at Site 1 for 
50 Timesteps
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Results – Assimilation Error 
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Run Type
State 

Ensemble 
Mean Error

State 
Ensemble 

Mean 
Spread

Tracer 
Ensemble 

Mean Error

Tracer 
Ensemble 

Mean 
Spread

No Assimilation 23.1688 22.9384 7.9196 9.1916

Assimilate State 
Obs 1.7656 1.9191 1.043 1.1736

Assimilate 
Tracer Obs 22.8191 22.4523 3.7832 3.7914

Assimilate State 
and Tracer Obs 1.6284 1.7289 0.71986 0.7956
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Results – Assimilation Error 

Please Stop and Smell the Tracers

Site 20 Site 40

Only Assimilating Tracer Observations (Zoomed in at Wind 
Timeseries of Site 1)

Ensemble Mean Error - 
22.8191
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Results – Source Characterization 

Please Stop and Smell the Tracers

Characterizing source location and rate (of 100) by assimilating wind and tracer 
observations 

Source at 
Site 1

Source at Site 1 
and 20
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Further Steps
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• Exploring source characterization capabilities of data 
assimilation in Lorenz 96 with lower quality 
observations

• Implementing tracer advection in higher level 
circulation models

• Exploring novel assimilation techniques designed 
specifically for tracers
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