
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Performance Portability of Shallow Water Model
with DPC++

SIParCS 2021
July 27, 2021

Leila Ghaffari and Zephaniah Connell

Mentors: Supreeth Suresh, Cena Miller, Jian Sun, and John Dennis

Motivation

❏ Increase in the computational
capacity of high-performance
computing platforms

❏ GPUs could save energy to
get the same amount of work
done (higher performance)

❏ Weather and Climate models
are usually computationally
expensive and suited for
parallelization.

❏ Execute single source code
on different CPU and GPU
platforms

Leila Ghaffari

❏ Port a Weather and Climate
mini-app (SWM) to DPC++
with limited modifications

❏ Optimize the performance of
the ported code on different
CPU and GPU platforms

2

Goals

Shallow Water Model (SWM) mini-app

3

A venerable 2D shallow water model benchmark on staggered
finite difference equations on a torus

Reference: The Dynamics of Finite-Difference Models of the Shallow-Water Equations, by
Robert Sadourny, J. Atm. Sciences, Vol 32, No 4, April 1975, p.680-688.

Leila Ghaffari

➢ Fortran version developed at NCAR
➢ C version used by the UK Met Office as a mini-app
➢ C++ version developed at NCAR in 2021
➢ Part of SPEC-FP benchmark suite for many years.
➢ Written when peak flops and bandwidth were comparable

Periodic BCs

4

Data Parallel C++ Libraries* Analysis & Debug
Tools**

Direct Programming API-Based Programming

oneAPI Product

*Libraries: oneCCL, oneDAL, oneDNN, oneDPL, oneMKL, oneTBB, oneVPL
**Tools: Intel Advisor, Intel VTune Profiler, Intel-enhanced GDB

Optimized Middleware & Frameworks

Optimized Applications

Programming Model - oneAPI?

CPU GPU FPGA

5

Data Parallel C++ Libraries* Analysis & Debug
Tools**

Direct Programming API-Based Programming

oneAPI Product

*Libraries: oneCCL, oneDAL, oneDNN, oneDPL, oneMKL, oneTBB, oneVPL
**Tools: Intel Advisor, Intel VTune Profiler, Intel-enhanced GDB

Optimized Middleware & Frameworks

Optimized Applications

Programming Model - oneAPI?

CPU GPU FPGA

6

Data Parallel C++ Libraries* Analysis & Debug
Tools**

Direct Programming API-Based Programming

oneAPI Product

*Libraries: oneCCL, oneDAL, oneDNN, oneDPL, oneMKL, oneTBB, oneVPL
**Tools: Intel Advisor, Intel VTune Profiler, Intel-enhanced GDB

Optimized Middleware & Frameworks

Optimized Applications

Programming Model - oneAPI?

CPU GPU FPGA

Gen9 (and higher)

● Intel® UHD
Graphics P630

● Intel® Iris® Xe
MAX Graphics

● Intel® Core™
processor family or
higher

● Intel® Xeon®
processors family

● Intel® Xeon® Scalable
processor family

FPGA Cards and
FPGA Custom

Platforms

● Intel® Arria® 10
FPGAs

● Intel® Stratix®
10 FPGAs

What is Data Parallel C+ (DPC++)?

DPC++

ISO C++ SYCL

Standards-based,
Cross-architecture
Language

Intel Compilers (GPU):
 C++: dpcpp, icx
 Fortran: ifort, ifx

Queue

Submits command groups to be executed by the
SYCL runtime

Device Selector

Queue is submitted to the device through device
selectors.

● gpu_selector
● cpu_selector
● default_selector
● host_selector
● intel::fpga_selector

Memory Model

- Unified Shared Memory: pointer-based
approach

- Buffers: Encapsulate data in a SYCL
application

- Accessors: Mechanism to access
buffer data

7

Kernels

Encapsulates methods and data for executing
code on the device

7Leila Ghaffari

8

queue Policy
Instance stream hipStream_t

ND_range league grid grid

work_group team block workgroup

sub_group vector warp wavefront

work_item thread/
rank thread thread/work

item

DPC++ Kokkos CUDA HIP

DPC++ | Kokkos | CUDA | HIP

More info: https://wiki.ucar.edu/x/XgXUGg

Reference: J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, X. Tian,
vectors. In: Data Parallel C++, p. 259–276. Apress (2020).

https://wiki.ucar.edu/x/XgXUGg

SWM code - Application of oneAPI

9

// Initialize velocities

DOMAIN_SIZE = (m+2)*(n+2); // Size of each array row

double u[3][DOMAIN_SIZE]; // 2D array with 3 rows (time levels)

// For-loop which targets a single row of the 3-row array, u

for (int i=1; i<m+1; i++) {

 for (int j=1;j<n+1;j++) {

 int ij = i*(n+2)+j;

 ...

 u[0][ij] = ...;

 }

}

Unified Shared
MemorySerial Buffer

SWM code - Application of oneAPI

10

 double u[3][DOMAIN_SIZE];

 auto R = range<1>{DOMAIN_SIZE};

 buffer<double, 1> u0_buf(u[0], R);

 q.submit([&](handler &h) {

 auto u0 = u0_buf.get_access(h, write_only);

 ...

 h.parallel_for(R, [=](auto ij) {

 int j = ij%(n+2);

 int i = (int) (ij - j)/(n+2);

 ...

 if (i==0 || j==0 || i == m+1 || j== n+1) {} else

 { u0[ij] = ...;} }); });

Unified Shared
MemorySerial Buffer

SWM code - Application of oneAPI

11

double **u = malloc_shared<double *>(3*DOMAIN_SIZE, q);

for(int i=1; i<m+1; i++)

 u[i] = malloc_shared<double>(DOMAIN_SIZE, q);

auto R = range<1>{DOMAIN_SIZE};

q.parallel_for(R, [=](auto ij) {

 int j = ij%(n+2);

 int i = (int) (ij - j)/(n+2);

 ...

 if (i==0 || j==0 || i == m+1 || j== n+1) {}

 else {

 u[ij] = ...;

 } });

Unified Shared
MemorySerial Buffer

SWM code - Application of oneAPI

12

double **u = malloc_shared<double *>(3*DOMAIN_SIZE, q);

for(int i=1; i<m+1; i++)

 u[i] = malloc_shared<double>(DOMAIN_SIZE, q);

auto R = range<1>{DOMAIN_SIZE};

q.parallel_for(R, [=](auto ij) {

 int j = ij%(n+2);

 int i = (int) (ij - j)/(n+2);

 ...

 if (i==0 || j==0 || i == m+1 || j== n+1) {}

 else {

 u[ij] = ...;

 } });

Unified Shared
MemorySerial Buffer

SWM code - Application of oneAPI

13

double **u = malloc_shared<double *>(3*DOMAIN_SIZE, q);

for(int i=1; i<m+1; i++)

 u[i] = malloc_shared<double>(DOMAIN_SIZE, q);

auto R = range<1>{DOMAIN_SIZE};

q.parallel_for(R, [=](auto ij) {

 int j = ij%(n+2);

 int i = (int) (ij - j)/(n+2);

 ...

 if (i==0 || j==0 || i == m+1 || j== n+1) {}

 else {

 u[ij] = ...;

 } });

Unified Shared
MemorySerial Buffer

Results

14
Skylake - Single Core
C++ (gnu/8.3.0 -O2)

Skylake - Single Core
DPC++ (dpcpp -O2)

Results

15
Casper V100
OpenACC (nvhpc/21.3 cuda/10.2 -O2)

Intel® Iris® Xe MAX
DPC++ (dpcpp -O2)

Results

16
Casper V100
OpenACC (nvhpc/21.3 cuda/10.2 -O2)

Intel® Iris® Xe MAX
DPC++ (dpcpp -O2)

Conclusions

17

Portability

Easiness

Syntax

Compiler

CPU
Performance

GPU
Performance

Documentation
& Support

USM Buffer

?

?

18

Future Work

● More investigation on the buffer model
● More optimization on the USM model
● Change the data structure in the SWM

mini-app
● Run the code on Nvidia and AMD GPUs
● Compile and run the ported code on FPGAs
● Add support for OpenMP

Mentors: Supreeth Suresh, Cena Miller,
Jian Sun, and John Dennis
Research Support: Richard Loft and
Thomas Hauser
SIParCS Admins and CODE Assistants:
AJ Lauer, Virginia Do, Jerry Cyccone, Max
Cordes Galbraith

Acknowledgements

Leila Ghaffari

Thank you!
Leila.Ghaffari@colorado.edu

