
Easier, Better, Faster, Shorter:
Updates to grid-aware analysis with

Dianne Deauna | University of Hawai’i at Mānoa | SIParCS intern | Project 8

Mentors: Anderson Banihirwe (NCAR), Julius Busecke (Columbia University),

and Deepak Cherian (CGD)

I would like to acknowledge the ‘āina on which I am coming from you today, from the ‘ili āina of Kauwalaa,

the ahupua’a of Mānoa, in the moku of Kona, on the mokupuni of O’ahu, in the pae’āina of Hawai’i. I

recognize that her majesty Queen Lili’uokalani yielded the Hawaiian Kingdom and these territories under

duress and protest to the United States to avoid the bloodshed of her people, and that Hawai’i remains an

illegally occupied state of America. I further recognize that generations of Indigenous Hawaiians and their

knowledge systems shaped Hawai’i in sustainable ways that allow me to enjoy these gifts today. For this I

am grateful as a guest, and I seek to support the varied strategies that the Indigenous peoples of Hawai’i are

using to protect their land and communities.

Land Acknowledgement

Adapted from: http://manoa.hawaii.edu/nhpol/language-option/pathways/auamo/

Ocean modeling is mostly representing the ocean
as a lot of rectangular cubes

Scalar quantity: temperature

Location: center

Calculate average temperature

along the x-axis: need distance

from the center to the cell faces

Allows for efficient

integration of PDEs

forwards through time

Assigning velocity values to shifted locations within a
grid cell makes calculations numerically efficient

Vector quantity: u-velocity

Location: “eastern” face

(shifted to the right

relative to temperature)

Calculate average u-velocity

along the x-axis: need distance

from the cell face to the centers

Postprocessing ocean models

require tools that can keep

track of these distances for

grid-aware operations

In addition to distances, postprocessing tools also need to
keep track of complex cell geometries

Temperature and u-velocity areas

are shifted in position and not

necessarily equal to each other

Consider: Area along

X,Y axis

● Makes working with n-dimensional arrays (often provided as
netcdf files) more efficient

● Labels raw arrays with dimensions, coordinates, and attributes

Python package

Python package

● General Circulation Model postprocessing with xarray
● Has sophisticated metric handling for staggered grid datasets
● Has built-in grid-aware operations such as average, integrate,

etc.

metrics
definition

● Information about grid cell geometry in physical space
● Includes:

○ Distance along ‘X’, ‘Y’, or ‘Z’ axis,
○ Areas along (‘X’,’Y’), (‘Y’,’Z’), and (‘X’,’Z’),
○ Volume along (‘X’,’Y’,’Z’)

● Usually not explicitly defined in model outputs for all variables
at all positions → there is a need for interpolation

Updated xgcm’s metric handling with three new methods

set_metrics()

● Enables overwriting of previously assigned metrics and allows for assigning multiple ones

on the same axis but with different dimensions

interp_like()

get_metric()

● Allows for the interpolation of a data array to the positions of another data array

● Selects for the required metric for a data variable along a specified axis for grid-aware

operations

● Incorporates interp_like() to allow for the automatic interpolation of missing metrics from

available metric values on surrounding positions

Interactive Jupyter notebook: bit.ly/xgcm_demo_siparcs2021

Load data from an Earth System Model
Interactive Jupyter notebook:

bit.ly/xgcm_demo_siparcs2021

Create a grid object using xgcm which contains all information
Interactive Jupyter notebook:

bit.ly/xgcm_demo_siparcs2021

Calculating area-weighted temperature is straightforward...
Interactive Jupyter notebook:

bit.ly/xgcm_demo_siparcs2021

...but not for area-weighted u-velocity (old version of xgcm)

Interactive Jupyter notebook:
bit.ly/xgcm_demo_siparcs2021

Old way = lengthy code :(Interactive Jupyter notebook:
bit.ly/xgcm_demo_siparcs2021

New way = easier, better, faster, and shorter!

grid.average() calls get_metric() to find an existing metric
[areacello] then automatically interpolates the missing one
[areacello_uo] using interp_like()

Interactive Jupyter notebook:
bit.ly/xgcm_demo_siparcs2021

Note: set_metrics gives you flexibility when assigning metrics, but it’s not required to use grid.average()

set_metrics lets you assign values to grid objects
Interactive Jupyter notebook:

bit.ly/xgcm_demo_siparcs2021

New updated xgcm = easier, better, faster, and shorter!
Interactive Jupyter notebook:

bit.ly/xgcm_demo_siparcs2021

Maráming salámat pô!
Interactive Jupyter notebook: bit.ly/xgcm_demo_siparcs2021

grid.average now uses two methods “under the hood”:
interp_like and get_metric which can interpolate metrics

available metricinterp_like() inputs: variable you need the metric for

axes for interpolationget_metric() inputs: variable you need the metric for

