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Ocean modeling is mostly representing the ocean 
as a lot of rectangular cubes

Scalar quantity: temperature 

Location: center

Calculate average temperature 

along the x-axis: need distance 

from the center to the cell faces

Allows for efficient 

integration of PDEs 

forwards through time



Assigning velocity values to shifted locations within a 
grid cell makes calculations numerically efficient

Vector quantity: u-velocity

Location: “eastern” face 

(shifted to the right 

relative to temperature)

Calculate average u-velocity 

along the x-axis: need distance 

from the cell face to the centers 

Postprocessing ocean models 

require tools that can keep 

track of these distances for 

grid-aware operations



In addition to distances, postprocessing tools also need to 
keep track of complex cell geometries

Temperature and u-velocity areas 

are shifted in position and not 

necessarily equal to each other

Consider: Area along 

X,Y axis



● Makes working with n-dimensional arrays (often provided as 
netcdf files) more efficient 

● Labels raw arrays with dimensions, coordinates, and attributes

Python package

Python package

● General Circulation Model postprocessing with xarray
● Has sophisticated metric handling for staggered grid datasets
● Has built-in grid-aware operations such as average, integrate, 

etc.



metrics
definition

● Information about grid cell geometry in physical space
● Includes: 

○ Distance along ‘X’, ‘Y’, or ‘Z’ axis, 
○ Areas along (‘X’,’Y’), (‘Y’,’Z’), and (‘X’,’Z’), 
○ Volume along (‘X’,’Y’,’Z’)

● Usually not explicitly defined in model outputs for all variables 
at all positions → there is a need for interpolation



Updated xgcm’s metric handling with three new methods

set_metrics()

● Enables overwriting of previously assigned metrics and allows for assigning multiple ones 

on the same axis but with different dimensions 

interp_like()

get_metric()

● Allows for the interpolation of a data array to the positions of another data array 

● Selects for the required metric for a data variable along a specified axis for grid-aware 

operations 

● Incorporates interp_like() to allow for the automatic interpolation of missing metrics from 

available metric values on surrounding positions 



Interactive Jupyter notebook: bit.ly/xgcm_demo_siparcs2021



Load data from an Earth System Model
Interactive Jupyter notebook: 

bit.ly/xgcm_demo_siparcs2021



Create a grid object using xgcm which contains all information
Interactive Jupyter notebook: 

bit.ly/xgcm_demo_siparcs2021



Calculating area-weighted temperature is straightforward... 
Interactive Jupyter notebook: 

bit.ly/xgcm_demo_siparcs2021



...but not for area-weighted u-velocity (old version of xgcm)

Interactive Jupyter notebook: 
bit.ly/xgcm_demo_siparcs2021



Old way = lengthy code :( Interactive Jupyter notebook: 
bit.ly/xgcm_demo_siparcs2021



New way = easier, better, faster, and shorter!

grid.average() calls get_metric() to find an existing metric 
[areacello] then automatically interpolates the missing one 
[areacello_uo] using interp_like() 

Interactive Jupyter notebook: 
bit.ly/xgcm_demo_siparcs2021



Note: set_metrics gives you flexibility when assigning metrics, but it’s not required to use grid.average()

set_metrics lets you assign values to grid objects
Interactive Jupyter notebook: 

bit.ly/xgcm_demo_siparcs2021



New updated xgcm = easier, better, faster, and shorter!
Interactive Jupyter notebook: 

bit.ly/xgcm_demo_siparcs2021



Maráming salámat pô!
Interactive Jupyter notebook: bit.ly/xgcm_demo_siparcs2021



grid.average now uses two methods “under the hood”:
interp_like and get_metric which can interpolate metrics

available metricinterp_like() inputs: variable you need the metric for

axes for interpolationget_metric() inputs: variable you need the metric for


