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Predictions uncertainty has to be addressed!
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But we can use the conditional probability distribution
instead of the huge memory-consuming dataset.
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But we can use the conditional probability distribution
instead of the huge memory-consuming dataset.
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Conditional Variational AutoEncoder (CVAE) is a Generative
not a Discriminative machine learning (ML) model.
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Conditional Variational AutoEncoder (CVAE) is a Generative
not a Discriminative machine learning (ML) model.
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The performance of a ML model significantly depends on
the Architecture and Hyperparameters.
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Conditional PDF is stored in the Latent Representation
layer.
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How to evaluate performance of probabilistic forecasts?

« Consistency:
- Continuous Ranked Probability Score (CRPS) | Ensemble forccast
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* Reliability:
- Rank Histogram (RH)

An observed value will be ranked based on its corresponding ensemble members and the
results after giving ranks to all the observed values will be presented
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CRPS for CVAE is comparable to AnEn.
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CVAE probabilistic forecasts are as reliable as AnEn but
with higher Bias.

CVAE AnEn
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CVAE probabilistic forecasts are as reliable as AnEn but

with higher Bias.
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CVAE is highly memory- and time-efficient comparing to
AnEn.
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Summary

« CVAE is a probabilistic machine learning model that can be used for probabilistic
forecasts.

* Probabilistic forecasts evaluation for CVAE shows consistent and reliable
performance of the model.

« CVAE significantly saves computational resources.

Future work

« Training the model with more features.
« Tuning the model to be applicable to bigger datasets.
« Testing the model with different datasets.
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Thanks for your time.
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Analog Ensemble (AnEn) method is memory consuming!
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Figure credited to: Laura Clemente-Harding, Weiming Hu, Parallel Analog Ensemble Forecasts with Ensemble Toolkit on HPC, 2019 Software
Engineering Assembly, NCAR, Boulder, CO, https://sea.ucar.edu/event/parallel-analog-ensemble-forecasts-ensemble-toolkit-hpc
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Kullback-Leibler (KL) loss function
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