
Porting IDL programs into Python for GPU-Accelerated In-situ Analysis
Damir Pulatov, Bo Zhang, Supreeth Suresh, Cena Miller

National Center for Atmospheric Research

Porting IDL programs into Python for GPU-Accelerated In-situ Analysis
Damir Pulatov, Bo Zhang, Supreeth Suresh, Cena Miller

National Center for Atmospheric Research

Motivation

• As computation is optimized, I/O and post processing becomes
the next major bottleneck in MURaM workflow.

• After I/O challenges are addressed, the post processing analy-
sis scripts written in IDL need to be ported and optimized to take
advantage of GPUs.

• IDL is proprietary and has a small community of programmers
(mostly astrophysics researchers).

• Python is analternativeworth exploring for analysis: open source,
large community, can be optimized for different hardware.

Fig. 1: Proposed workflow to address the I/O issues by GPU-to-GPU communication with the
help of DataSpaces framework. The analysis is shown in the lower square.

Goals

• Port analysis IDL programs into Python.
• Optimize Python code.
• Explore parallelization of Python program for both CPUs and
GPUs.

Porting

• Porting done with Numpy, Scipy and Xarray.
• Automatically extracted and converted data from MURaM into
Zarr.

• Zarr is format for storing compressed, chunked N-dimensional
arrays.

Fig. 4: Numpy is a numerical computation library that allows for fast array operations. Many
functions are written C and provide Python interface.

Plots

Fig. 5: Top view plot of results produced by IDL
Fig. 6: Top view plot of results produced by Python

Benchmarks

Fig. 7: Benchmark of two implementations of the same algorithm

Figure 7 shows the benchmarking information extracted for both IDL and
Python programs. The data represents ten runs on Casper for each IDL and
Python implementations. The runs are aggregated withmean and error bars.
Lower and upper whiskers show standard deviation of runs for each imple-
mentation. IDL is almost 10 times faster than Python because IDL’s interpola-
tion is parallel by default.

Parallelism

There are two potential routines that could be parallelized: tracing
and interpolation. These were were both explored through the use
of several libraries.

Focus Library Explanation
Tracing Dask1 Algorithm too complex for Dask to parallelize

Cupy2 Limited support for scipy functions used in our implementation
Interpolation Numba3 No parallelism due to mixing of different data types

Cython4 Issues with GIL (Global Interpreter Lock) in CPython
Fig. 8: Results of exploring parallelism with various libraries

Future Work

• Investigate the use of alternative Python implementations
(Jython, IronPython, etc.) due to CPython’s limitations.

• Implement interpolation in C++.
• Investigating the use of transcompilers.
• Extend idlwrap Python library which provides IDL-like interface
for Python

Acknowledgements

Administrative: Jerry Cyconne, Max Cordex Galbraith, Virginia Do, AJ
Lauer
Technical: AndersonBanihirwe, SheriMickelson, Jian Sun, BrianDob-
bins, John Dennis, Richard Loft

References

[1] Dask Development Team. Dask: Library for dynamic task scheduling. 2016. url:
https://dask.org.

[2] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA GPU Cal-
culations”. In: Proceedings of Workshop on Machine Learning Systems (Learn-
ingSys) in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS). 2017. url: http://learningsys.org/nips17/assets/papers/paper_
16.pdf.

[3] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based
Python JITCompiler”. In: Proceedings of the SecondWorkshopon the LLVMCom-
piler Infrastructure in HPC. LLVM ’15. Austin, Texas: Association for Computing
Machinery, 2015. isbn: 9781450340052. doi: 10.1145/2833157.2833162. url: https:
//doi.org/10.1145/2833157.2833162.

[4] S. Behnel et al. “Cython: The Best of Both Worlds”. In: Computing in Science
Engineering 13.2 (2011), pp. 31–39. issn: 1521-9615. doi: 10.1109/MCSE.2010.118.


