
The Python package makes ocean model
processing easier, better, faster, and shorter
Dianne Deauna

1,

 Anderson Banihirwe

2

, Julius Busecke

3

, and Deepak Cherian

2

1

University of Hawai’i at Mānoa,

2

National Center for Atmospheric Research,

3

Columbia University

Model metrics refer to the length, width,

area, and volume of grid cells within

circulation models. For example, the

distance along the x-axis between

temperature points (blue), differs from

the distance between u-velocity points

(yellow).

The xgcm package relies on the knowledge of model metrics to run operations

such as area-weighted average temperature. Over the summer, the following

features were updated to improve xgcm’s ability to handle metrics:

set_metrics()

● Enables overwriting of previously assigned metrics, and allows for assigning multiple

metrics on the same axis with different dimensions

interp_like()

get_metric()

● Allows for the interpolation of a data array to the positions of another data array

(e.g., given the distance along x-axis for temperature, we can interpolate this to the

distance along the x-axis for u-velocity)

● Selects for the metric required for a data variable along a specified axis for grid-aware

operations and allows for automatic interpolation of missing metrics from available

metric values on surrounding positions

Input: model surface
temperature

Output: time series of
area-weighted temperature

Ocean modeling is mostly representing the ocean as

cubes, where vector and scalar quantities are

computed at different positions within them. The

xgcm Python package can account for these model

geometries (metrics) and do operations such as

area-weighted average with minimal, intuitive code.

grid.average(temperature, ['X', 'Y'])

Interactive Jupyter notebook:
bit.ly/xgcm_demo_siparcs2021

