NATIONAL CENTER FOR
ATMOSPHERIC RESEARCH
% University of Colorado
Boulder

> Portability is a desired capability which enables us to run our
code on ever-changing hardware and software platforms.

> |t can be difficult and time-consuming to port or develop
multiple versions of code that only run on specific
architectures.

> Kokkos is a new framework that advertises the ability to
execute the same code on CPU or accelerators with limited or
no modifications.

> Port the Shallow Water Model (SWM) mini-app to Kokkos with
limited modifications

> Optimize the performance of the ported code on different
hardware platforms

NCAR |

ﬁUNlVERSITV
or WYOMING

Introduction to the Shallow Water Model (SWM) mini-app

SWM is a venerable 2D shallow water
model benchmark on staggered finite
difference equations on a torus.

Introduction to Kokkos

Architectures:

GPU: Nvidia, AMD, Intel GPUs

CPU: x86, Power 8, KNL, ARM
Compilers:

GNU 5.3.0 or newer

Intel 17.0.1 or newer

Clang 4.0.0 or newer

PGl 18.7 or newer

CUDA 9.1 or newer

Kokkos is a C++ library that can be
used to write a single source code
that can execute serially on a
CPU, in parallel on a CPU using
OpenMP backend, and in parallel
on a GPU using CUDA backend. It
is performance portable because it
is architecture aware.

Pattern Parallel structure

Policy Index space

Views Multi-dimensional data class
Kernel Work performed on each index
Execution / Memory location, execution
Memory Spaces hardware, and execution method

Performance Portability of Shallow
Water Model with Kokkos

Zephaniah Connell"? and Leila Ghaffari'-3

"National Center for Atmospheric Research
2Univeristy of Wyoming
3University of Colorado Boulder

Performance & Accuracy - CPU - Serial

Gigiaflops

Performance - CPU - Serial
10

0.1

0.01

&

S
£ e

S S5

Data Size

Kokkos performed ~50x slower than C++

=== C++ Skylake 1-Core gnu/8.3.0 -02
Kokkos Skylake 1-Core gnu/8.3.0 -O2

Accuracy Compared to C++ Serial Results

L_inf Norm

TRV TN

Data Size

Performance & Accuracy - CPU - Parallel

Gigaflops

Performance - CPU - Parallel
100
50

& S S
S S & ﬁéf’@

Data Size

L J

Kokkos performed ~44x slower than OpenMP
and ~1.67x slower than C++ Serial

=== OpenMP Skylake 36-Core gnu/8.3.0 -O2
Kokkos Skylake 36-Core gnu/8.3.0 -O2

Accuracy Compared to C++ Serial Results
1

05
0
05

L_inf Norm

£ £F L&

S

Data Size

L J

Performance & Accuracy - GPU - Parallel

Gigaflops

Performance - GPU - Parallel

500
I E——

- /

50

10

5
§

£E IS S S

Data Size

Best performance: ~1.6x faster than OpenACC
and ~43x faster than C++ Serial

Worst performance: ~4.4x slower than
OpenACC and ~3.4x faster than C++ Serial

w=== OpenACC V100 nvhpc/21.3 cuda/10.1 -02
Kokkos V100 gnu/8.3.0 cuda/10.1 -O2

Accuracy Compared to C++ Serial Results
1.00E-6

1.00E-7

L_inf Norm

s PRV

Data Size

Conclusions

> A Kokkos source code file can execute on many architectures

> Most Kokkos concepts are straightforward, so porting to
Kokkos generally isn’t difficult but time consuming

> The CPU performance for Serial and Parallel versions of
Kokkos was poor and needs further investigation

> The GPU performance of Kokkos was reasonable, but also
needs further investigation

> The Kokkos GitHub repository Wiki contains relatively
comprehensive documentation

> The Kokkos developers provide helpful assistance on Slack
within minutes

In my opinion,
for any project that may benefit from executing code
on different GPU architectures,
Kokkos is worthwhile.

\. J

> Run ported SWM code on Intel and AMD GPUs
> Remeasure performance after implementing the following or
other optimizations discovered after further research:
o Explicit memory layouts
o Refactoring the SWM data structures
o Enabling vectorization for Views
o Using TeamPolicy w/ lower level optimizations and indexing
> Test performance of multi-node and multiple GPU runs w/ MPI
> Further explore interoperability with 3rd party profilers

REE

Carter Edwards, H., Trott, C. R., & Sunderland, D. (2014). Kokkos:
Enabling manycore performance portability through polymorphic memory
access patterns. Journal of Parallel and Distributed Computing, 74(12),

3202-3216. https:/doi.ora/10.1016/j.jpdc.2014.07.003

Acknowledgements

Mentors: Supreeth Suresh, Cena Miller, Jian Sun, and John Dennis

Research Support: Richard Loft and Thomas Hauser
SIParCS Admins and CODE Assistants: AJ Lauer, Virginia Do,
Jerry Cyccone, Max Cordes Galbraith



https://doi.org/10.1016/j.jpdc.2014.07.003

